Skip to main content
Log in

Influence of Nickel, Silver, and Sulphur Doping on the Photocatalytic Efficiency of Mesoporous ZnO Nanoparticles

  • Research Article - -Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Silver-, nickel-, and sulphur-doped mesoporous ZnO are prepared as an efficient photocatalyst through the hydrothermal technique using F127, nickel nitrate, silver nitrate, thiourea, and zinc nitrate hexahydrate. Availability of mesoporous morphology with nanocrystallite size range is established by nitrogen adsorption–desorption isotherm and X-ray diffraction study. Impact of doping on optical properties is explored by UV–vis and PL spectra study and proclaimed that band gap energy and recombination rapidity fall with rising doping portion. Endorsement of porous assembly with crystal size and shape is executed by SEM and TEM images. Silver, nickel, and sulphur show their occurrence in ZnO via EDX spectra. The competence of the formulated photocatalyst is checked toward three different dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ban, J.; Xu, G.; Zhang, L.; Lin, H.; Sun, Z.; Lv, Y.; Jia, D.Z.: Mesoporous ZnO microcube derived from a metal-organic framework as photocatalyst for the degradation of organic dyes. J. Solid State Chem. (2017). https://doi.org/10.1016/j.jssc.2017.09.002

    Article  Google Scholar 

  2. Chauhan, N.; Singh, V.; Kumar, S.; Kumari, M.; Sirohi, K.: Synthesis of nitrogen & palladium co-doped mesoporous titanium dioxide nanoparticles via evaporation induced self assembly method and study of their photocatalytic properties. J. Mol. Str. (2019). https://doi.org/10.1016/j.molstruc.2019.02.055

    Article  Google Scholar 

  3. Khan, M.I.: Investigations of structural, morphological and optical properties of Cu: ZnO/TiO2/ZnO and Cu:TiO2/ZnO/TiO2 thin films prepared by spray pyrolysis technique. J. Res. Phys. (2017). https://doi.org/10.1016/j.rinp.2017.08.038

    Article  Google Scholar 

  4. Narayanana, N.; Deepaka, N.K.: B-N codoped p type ZnO thin films for optoelectronic applications. Mat. Res. (2018). https://doi.org/10.1590/1980-5373-MR-2017-0618

    Article  Google Scholar 

  5. Li, W.; Wang, G.; Chen, C.; Liao, J.; Li, Z.: Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+and Co2+ ions. J Nanomater. (2017). https://doi.org/10.3390/nano7010020

    Article  Google Scholar 

  6. Pouran, S.R.; Aziz, A.R.A.; Daud, W.M.; Shafeeyan, M.S.: Effects of niobium and molybdenum impregnation on adsorption capacity and Fenton catalytic activity of magnetite. RSC Adv. (2015). https://doi.org/10.1039/C5RA15660B

    Article  Google Scholar 

  7. Pouran, S.R.; Bayrami, A.; Aziz, A.R.A.; Daud, W.M.; Shafeeyan, M.S.: Ultrasound and UV assisted Fenton treatment of recalcitrant wastewaters using transition metal-substituted-magnetite nanoparticles. J. Mol. Liq. (2016). https://doi.org/10.1016/j.molliq.2016.07.120

    Article  Google Scholar 

  8. Pouran, S.R.; Bayrami, A.; Aziz, A.R.A.; Daud, W.M.; Shafeeyan, M.S.; Khataee, A.: Comprehensive study on the influence of molybdenum substitution on characteristics and catalytic performance of magnetite nanoparticles. Res. Chem. Intermed. (2018). https://doi.org/10.1007/s11164-017-3142-x

    Article  Google Scholar 

  9. Pouran, S.R.; Bayrami, A.; Shafeeyan, M.S.; Raman, A.A.; Daud, W.M.: A comparative study on a cationic dye removal through homogeneous and heterogeneous fenton oxidation systems. Acta Chim. Slov. (2018). https://doi.org/10.17344/acsi.2017.3732

    Article  Google Scholar 

  10. Khaki, M.R.D.; Shafeeyan, M.S.; Raman, A.A.A.; Daud, W.M.: Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. J. Mol. Liq. (2018). https://doi.org/10.1016/j.molliq.2017.11.030

    Article  Google Scholar 

  11. Khaki, M.R.D.; Shafeeyan, M.S.; Raman, A.A.A.; Daud, W.M.: Enhanced UV–Visible photocatalytic activity of Cu-doped ZnO/TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-017-8515-9

    Article  Google Scholar 

  12. Khaki, M.R.D.; Shafeeyan, M.S.; Raman, A.A.A.; Daud, W.M.A.W.: Application of doped photocatalysts for organic pollutant degradation—A review. J. Environ. Manag. (2017). https://doi.org/10.1016/j.jenvman.2017.04.099

    Article  Google Scholar 

  13. Shanmugam, V.; Jeyaperumal, K.S.: Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity. Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2017.11.167

    Article  Google Scholar 

  14. Pascariu, P.; Tudose, I.V.; Suchea, M.; Koudoumas, E.; Fifere, N.; Airinei, A.: Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.04.124

    Article  Google Scholar 

  15. Nie, N.; He, F.; Zhang, L.; Cheng, B.: Direct Z-scheme PDA-modified ZnO hierarchical microspheres with enhanced photocatalytic CO2 reduction performance. Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.07.002

    Article  Google Scholar 

  16. Qi, K.; Cheng, B.; Yu, J.; Ho, W.: Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloy. Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.08.142

    Article  Google Scholar 

  17. Yu, W.; Zhang, J.; Peng, T.: New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Appl. Catal. B (2016). https://doi.org/10.1016/j.apcatb.2015.07.031

    Article  Google Scholar 

  18. Yu, W.; Xu, D.; Peng, T.: Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J. Mater. Chem. A (2015). https://doi.org/10.1039/C5TA05503B

    Article  Google Scholar 

  19. Laurenti, M.; Cauda, V.: Gentamicin-releasing mesoporous ZnO structures. J. Mater. (2018). https://doi.org/10.3390/ma11020314

    Article  Google Scholar 

  20. Turkyilmaz, S.S.; Guy, N.; Ozacar, M.: Photocatalytic efficiencies of Ni, Mn, Fe and Ag-doped ZnO nanostructures synthesized by hydrothermal method: the synergistic/antagonistic effect between ZnO and metals. J. Photochem. Photobiol. A (2017). https://doi.org/10.1016/j.jphotochem.2017.03.0

    Article  Google Scholar 

  21. Tripathy, N.; Ahmad, R.; Kuk, H.; Lee, D.H.; Hahn, Y.B.; Khang, G.: Mesoporous ZnO nanoclusters as an ultra-active photocatalyst. J. Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.03.030

    Article  Google Scholar 

  22. Yatskiv, R.; Tiagulskyi, S.; Grym, J.: Characterization of graphite/ZnO Schottky barriers formed on polar and nonpolar ZnO surfaces. J. Phys. Status Solidi (a) (2018). https://doi.org/10.1002/pssa.201800734

    Article  Google Scholar 

  23. Chauhan, N.; Singh, V.; Kumar, S.; Kumari, M.; Sirohi, K.: Synthesis of sulphur & indium co-doped mesoporous zinc oxide nanoparticles via hydrothermal method to study their photocatalytic activity. Optik (2019). https://doi.org/10.1016/j.ijleo.2019.03.144

    Article  Google Scholar 

  24. Chauhan, N.; Singh, V.; Kumar, S.; Kumari, M.; Sirohi, K.: Preparation of silver and nitrogen co-doped mesoporous zinc oxide nanoparticles by evaporation induced self assembly process to study their photocatalytic activity. J. Sol-Gel Sci. Technol. (2019). https://doi.org/10.1007/s10971-019-04969-6

    Article  Google Scholar 

  25. Saravanan, S.; Silambarasan, M.; Soga, T.: Structural, morphological and optical studies of Ag-doped ZnO nanoparticles synthesized by simple solution combustion method. Jpn. Soc. Appl. Phys. (2014). https://doi.org/10.7567/JJAP.53.11RF01/meta

    Article  Google Scholar 

  26. Clug, H.P.; Alexander, L.E.: Polycrystalline and Amorphous Materials, 2nd edn. Wiley, New York (1974)

    Google Scholar 

  27. Pan, J.H.; Zhang, X.; Du, A.J.; Bai, H.; Ng, J.; Sun, D.: A hierarchically assembled mesoporous ZnO hemisphere array and hollow microspheres for photocatalytic membrane water filtration. J. Phys. Chem. Chem. Phys. (2013). https://doi.org/10.1039/c2cp40997f

    Article  Google Scholar 

  28. Putz, A.M.; Len, A.; Ianasi, C.; Savii, C.; Almasy, L.: Ultrasonic preparation of mesoporous silica using pyridinium ionic liquid. Korean J. Chem. Eng. (2016). https://doi.org/10.1007/s11814-016-0021-x

    Article  Google Scholar 

  29. Ladavos, A.K.; Katsoulidis, A.P.; Iosifidis, A.; Triantafyllidis, K.S.; Pinnavaia, T.J.; Pomonis, P.J.: The BET equation, the inflection points of N2 adsorption isotherms and the estimation of specific surface area of porous solids. J. Micropor. Mesopor. Mater. (2012). https://doi.org/10.1016/j.micromeso.2011.11.005

    Article  Google Scholar 

  30. Goh, E.G.; Xu, X.; McCormick, P.G.: Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Mater. Scr. (2014). https://doi.org/10.1016/j.scriptamat.2014.01.033

    Article  Google Scholar 

  31. Katiyar, A.; Kumar, N.; Srivastava, A.: Optical properties of ZnO nanoparticles synthesized by co-precipitation method using LiOH. Mater. Today Proc. (2018). https://doi.org/10.1016/j.matpr.2017.10.034

    Article  Google Scholar 

  32. Thangeeswari, T.; George, A.T.; Kumar, A.A.: Optical properties and FTIR studies of cobalt doped ZnO nanoparticles by simple solution method. Indian J. Sci. Tech. (2016). https://doi.org/10.17485/ijst/2016/v9i1/85776

    Article  Google Scholar 

  33. Ahmed, A.; Siddique, M.N.; Alam, U.; Ali, T.; Tripathi, P.: Improved photocatalytic activity of Sr doped SnO2 nanoparticles: a role of oxygen vacancy. J. Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.08.182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Chauhan.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, N., Singh, V., Kumar, S. et al. Influence of Nickel, Silver, and Sulphur Doping on the Photocatalytic Efficiency of Mesoporous ZnO Nanoparticles. Arab J Sci Eng 45, 249–259 (2020). https://doi.org/10.1007/s13369-019-04291-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04291-x

Keywords

Navigation