Skip to main content

Prediction of Wax Appearance Temperature Using Artificial Intelligent Techniques

Abstract

The paraffin particles can promote and be involved in the formation of deposits which can lead to plugging of oil production facilities. In this work, an experimental prediction of wax appearance temperature (WAT) has been performed on 59 Algerian crude oil samples using a pour point tester. In addition, a modeling investigation was done to create reliable WAT paradigms. To do so, gene expression programming and multilayers perceptron optimized with Levenberg–Marquardt algorithm (MLP-LMA) and Bayesian regularization algorithm were implemented. To generate these models, some parameters, namely density, viscosity, pour point, freezing point and wax content in crude oils, have been used as input parameters. The results reveal that the developed models provide satisfactory results. Furthermore, the comparison between these models in terms of accuracy indicates that MLP-LMA has the best performances with an overall average absolute relative error of 0.23% and a correlation coefficient of 0.9475.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Elsharkawy, A.M.; Al-Sahhaf, T.A.; Fahim, M.A.: Wax deposition from Middle East crudes. Fuel 79, 1047–1055 (2000)

    Article  Google Scholar 

  2. Sarica, C.; Panacharoensawad, E.: Review of paraffin deposition research under multiphase flow conditions. Energy Fuels 26, 3968–3978 (2012)

    Article  Google Scholar 

  3. Kelechukwu, E.M.; Al-Salim, H.S.; Saadi, A.: Prediction of wax deposition problems of hydrocarbon production system. J. Pet. Sci. Eng. 108, 128–136 (2013)

    Article  Google Scholar 

  4. Chien-Hou, W.; Kang-Shi, W.; Shuler, P.J.; Tang, Y.: others: measurement of wax deposition in paraffin solutions. Am. Inst. Chem. Eng. AIChE J. 48, 2107 (2002)

    Article  Google Scholar 

  5. Kelland, M.A.: Production Chemicals for the Oil and Gas Industry. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  6. Robustillo, M.D.; Coto, B.; Martos, C.; Espada, J.J.: Assessment of different methods to determine the total wax content of crude oils. Energy Fuels 26, 6352–6357 (2012)

    Article  Google Scholar 

  7. Kamari, A.; Mohammadi, A.H.; Bahadori, A.; Zendehboudi, S.: A reliable model for estimating the wax deposition rate during crude oil production and processing. Pet. Sci. Technol. 32, 2837–2844 (2014)

    Article  Google Scholar 

  8. Bidmus, H.O.; Mehrotra, A.K.: Solids deposition during “cold flow” of wax- solvent mixtures in a flow-loop apparatus with heat transfer. Energy Fuels 23, 3184–3194 (2009)

    Article  Google Scholar 

  9. Aiyejina, A.; Chakrabarti, D.P.; Pilgrim, A.; Sastry, M.K.S.: Wax formation in oil pipelines: a critical review. Int. J. Multiph. Flow 37, 671–694 (2011)

    Article  Google Scholar 

  10. Al-Yaari, M.; et al.: Paraffin wax deposition: mitigation and removal techniques. In: SPE Saudi Arabia Section Young Professionals Technical Symposium (2011)

  11. Taheri-Shakib, J.; Shekarifard, A.; Naderi, H.: Characterization of the wax precipitation in Iranian crude oil based on Wax Appearance Temperature (WAT): part 1. The influence of electromagnetic waves. J. Pet. Sci. Eng. 161, 530–540 (2018)

    Article  Google Scholar 

  12. Huang, Z.; Zheng, S.; Fogler, H.S.: Wax Deposition: Experimental Characterizations, Theoretical Modeling, and Field Practices. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  13. Javadian, H.; Asadollahpour, S.; Ruiz, M.; Sastre, A.M.; Ghasemi, M.; Asl, S.M.H.; Masomi, M.: Using fuzzy inference system to predict Pb(II) removal from aqueous solutions by magnetic Fe3O4/H2SO4-activated Myrtus Communis leaves carbon nanocomposite. J. Taiwan Inst. Chem. Eng. 91, 186–199 (2018)

    Article  Google Scholar 

  14. Ayegba, P.O.; Abdulkadir, M.; Hernandez-Perez, V.; Lowndes, I.S.; Azzopardi, B.J.: Applications of artificial neural network (ANN) method for performance prediction of the effect of a vertical 90° bend on an air–silicone oil flow. J. Taiwan Inst. Chem. Eng. 74, 59–64 (2017)

    Article  Google Scholar 

  15. Raja, M.A.Z.; Ahmed, T.; Shah, S.M.: Intelligent computing strategy to analyze the dynamics of convective heat transfer in MHD slip flow over stretching surface involving carbon nanotubes. J. Taiwan Inst. Chem. Eng. 80, 935–953 (2017)

    Article  Google Scholar 

  16. Ahmadi, M.-A.; Ahmadi, M.H.; Alavi, M.F.; Nazemzadegan, M.R.; Ghasempour, R.; Shamshirband, S.: Determination of thermal conductivity ratio of CuO/ethylene glycol nanofluid by connectionist approach. J. Taiwan Inst. Chem. Eng. 91, 383–395 (2018)

    Article  Google Scholar 

  17. Menad, N.A.; Noureddine, Z.; Hemmati-Sarapardeh, A.; Shamshirband, S.; Mosavi, A.; Chau, K.: Modeling temperature dependency of oil-water relative permeability in thermal enhanced oil recovery processes using group method of data handling and gene expression programming. Eng. Appl. Comput. Fluid Mech. 13, 724–743 (2019)

    Google Scholar 

  18. Menad, N.A.; Noureddine, Z.; Hemmati-Sarapardeh, A.; Shamshirband, S.: Modeling temperature-based oil-water relative permeability by integrating advanced intelligent models with grey wolf optimization: application to thermal enhanced oil recovery processes. Fuel 242, 649–663 (2019)

    Article  Google Scholar 

  19. Menad, N.A.; Noureddine, Z.: An efficient methodology for multi-objective optimization of water alternating CO2 EOR process. J. Taiwan Inst. Chem. Eng. 99, 154–165 (2019)

    Article  Google Scholar 

  20. Menad, N.A.; Hemmati-Sarapardeh, A.; Varamesh, A.; Shamshirband, S.: Predicting solubility of CO2 in brine by advanced machine learning systems: application to carbon capture and sequestration. J. CO2 Util. 33, 83–95 (2019)

    Article  Google Scholar 

  21. Amirian, E.; Fedutenko, E.; Yang, C.; Chen, Z.; Nghiem, L.: Artificial neural network modeling and forecasting of oil reservoir performance. In: Moshirpour, M., Far, B., Alhajj, R. (eds.) Applications of Data Management and Analysis. Lecture Notes in Social Networks, pp. 43–67. Springer, Cham (2018)

    Google Scholar 

  22. Amirian, E.; Leung, J.Y.; Zanon, S.; Dzurman, P.: Integrated cluster analysis and artificial neural network modeling for steam-assisted gravity drainage performance prediction in heterogeneous reservoirs. Expert Syst. Appl. 42, 723–740 (2015)

    Article  Google Scholar 

  23. Amirian, E.; Dejam, M.; Chen, Z.: Performance forecasting for polymer flooding in heavy oil reservoirs. Fuel 216, 83–100 (2018)

    Article  Google Scholar 

  24. Ahmadi, M.A.; Zendehboudi, S.; James, L.A.: Developing a robust proxy model of CO2 injection: coupling Box–Behnken design and a connectionist method. Fuel 215, 904–914 (2018)

    Article  Google Scholar 

  25. Ahmadi, M.A.; Ebadi, M.; Shokrollahi, A.; Majidi, S.M.J.: Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir. Appl. Soft Comput. 13, 1085–1098 (2013)

    Article  Google Scholar 

  26. Hemmati-Sarapardeh, A.; Varamesh, A.; Husein, M.M.; Karan, K.: On the evaluation of the viscosity of nanofluid systems: modeling and data assessment. Renew. Sustain. Energy Rev. 81, 313–329 (2018)

    Article  Google Scholar 

  27. Ameli, F.; Hemmati-Sarapardeh, A.; Schaffie, M.; Husein, M.M.; Shamshirband, S.: Modeling interfacial tension in N 2/n-alkane systems using corresponding state theory: application to gas injection processes. Fuel 222, 779–791 (2018)

    Article  Google Scholar 

  28. Ameli, F.; Hemmati-Sarapardeh, A.; Dabir, B.; Mohammadi, A.H.: Determination of asphaltene precipitation conditions during natural depletion of oil reservoirs: a robust compositional approach. Fluid Phase Equilib. 412, 235–248 (2016)

    Article  Google Scholar 

  29. Hemmati-Sarapardeh, A.; Ameli, F.; Dabir, B.; Ahmadi, M.; Mohammadi, A.H.: On the evaluation of asphaltene precipitation titration data: modeling and data assessment. Fluid Phase Equilib. 415, 88–100 (2016)

    Article  Google Scholar 

  30. Benamara, C.; Nait Amar, M.; Gharbi, K.; Hamada, B.: Modeling wax disappearance temperature using advanced intelligent frameworks. Energy Fuels (2019). https://doi.org/10.1021/acs.energyfuels.9b03296

    Article  Google Scholar 

  31. Bian, X.Q.; Huang, J.H.; Wang, Y.; Liu, Y.B.; Kaushika Kasthuriarachchi, D.T.; Huang, L.J.: Prediction of wax disappearance temperature by intelligent models. Energy Fuels 33, 2934–2949 (2019). https://doi.org/10.1021/acs.energyfuels.8b04286

    Article  Google Scholar 

  32. Kamari, A.; Rahimzadeh, A.; Mohammadi, A.H.; Ramjugernath, D.: Evaluation of wax disappearance temperatures in hydrocarbon fluids using soft computing approaches. Pet. Sci. Technol. 37, 829–836 (2019)

    Article  Google Scholar 

  33. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson, Upper Saddle River (2001)

    Google Scholar 

  34. Lashkarbolooki, M.; Hezave, A.Z.; Ayatollahi, S.: Artificial neural network as an applicable tool to predict the binary heat capacity of mixtures containing ionic liquids. Fluid Phase Equilib. 324, 102–107 (2012)

    Article  Google Scholar 

  35. Rostami, A.; Hemmati-Sarapardeh, A.; Shamshirband, S.: Rigorous prognostication of natural gas viscosity: smart modeling and comparative study. Fuel 222, 766–778 (2018)

    Article  Google Scholar 

  36. Fletcher, R.: Practical Methods of Optimization. Wiley, New York (2013)

    MATH  Google Scholar 

  37. Toth, E.; Brath, A.; Montanari, A.: Comparison of short-term rainfall prediction models for real-time flood forecasting. J. Hydrol. 239, 132–147 (2000)

    Article  Google Scholar 

  38. Yue, Z.; Songzheng, Z.; Tianshi, L.: Bayesian regularization BP neural network model for predicting oil-gas drilling cost. In: 2011 International Conference on Business Management and Electronic Information (BMEI), pp. 483–487 (2011)

  39. Ferreira, C.: Algorithm for solving gene expression programming: a new adaptive problems. Complex Syst. 13, 87–129 (2001)

    MATH  Google Scholar 

  40. Teodorescu, L.; Sherwood, D.: High energy physics event selection with gene expression programming. Comput. Phys. Commun. 178, 409–419 (2008)

    Article  Google Scholar 

  41. Hajirezaie, S.; Hemmati-Sarapardeh, A.; Mohammadi, A.H.; Pournik, M.; Kamari, A.: A smooth model for the estimation of gas/vapor viscosity of hydrocarbon fluids. J. Nat. Gas Sci. Eng. 26, 1452–1459 (2015)

    Article  Google Scholar 

  42. Chen, G.; Fu, K.; Liang, Z.; Sema, T.; Li, C.; Tontiwachwuthikul, P.; Idem, R.: The genetic algorithm based back propagation neural network for MMP prediction in CO2-EOR process. Fuel 126, 202–212 (2014)

    Article  Google Scholar 

  43. Shateri, M.; Ghorbani, S.; Hemmati-Sarapardeh, A.; Mohammadi, A.H.: Application of Wilcoxon generalized radial basis function network for prediction of natural gas compressibility factor. J. Taiwan Inst. Chem. Eng. 50, 131–141 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Laboratories Division of Sonatrach, for the continuous support in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menad Nait Amar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benamara, C., Gharbi, K., Nait Amar, M. et al. Prediction of Wax Appearance Temperature Using Artificial Intelligent Techniques. Arab J Sci Eng 45, 1319–1330 (2020). https://doi.org/10.1007/s13369-019-04290-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04290-y

Keywords

  • Paraffin
  • WAT
  • Crude oil
  • Pour point tester
  • MLP
  • GEP