Skip to main content
Log in

Very High Step-Up Converter with Switched Capacitor and Coupled Inductor

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

To increase the voltage gain of power electronic circuits, numerous converters have been designed by researchers. In particular, step-up converters are used in various circuits and systems due to their reliability. Mostly, in some studies, researchers proposed to use coupled inductors and switched capacitors. Therefore, in this study, we aim to use new-generation E-HEMT switches by using a hybrid topology which includes both a switched capacitor and a coupled inductor to deliver ultra-high voltage to the output. The proposed switched capacitor-based hybrid converter (SCBHC) is modeled in Simulink and PowerSim to verify the analytical voltage gain derivations. The proposed SCBHC is compared with a traditional boost converter, a switched capacitor-based topology and two different coupled inductor-based schemes in terms of gain performance for different duty cycles, switching frequencies and turn ratios. With this combined design, we obtain approximately 300–400% more voltage gain than a traditional boost converter. The proposed SCBHC provides a considerable gain and a wide output voltage range with lower turn ratios compared with other topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tofoli, F.L.; Pereira, D.C.; Paula, W.J.; Oliviera Junior, D.S.: Survey on non-isolated high-voltage step-up dc-dc topologies based on the boost converter. IET Power Electron. 8(10), 2044–2057 (2015)

    Article  Google Scholar 

  2. Li, W.; He, X.: Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications. IEEE Trans. Ind. Electron. 58(4), 1239–1250 (2011)

    Article  Google Scholar 

  3. Alexrod, B.; Berkovich, Y.; Ioinovici, A.: A cascade boost-capacitor-switched-converter two level inverter with an optimized multilevel output waveform. IEEE Trans. Circuits Syst. 52(12), 2763–2770 (2005)

    Article  Google Scholar 

  4. Abutbul, O.; Gherlitz, A.; Berkovich, Y.; Ioinovici, A.: Step-up switching-mode converter with high voltage gain using a switched capacitor circuit. IEEE Trans. Circuits Syst. 50(8), 1098–1102 (2003)

    Article  Google Scholar 

  5. Alexrod, B.; Berkovich, Y.; Ioinovici, A.: Transformerless dc-dc converters with a very high dc line-to-load voltage ratio. In: Proceedings of the International Symposium on Circuits and Systems, pp. III-433-III-438 (2003)

  6. Li, K.; Hu, Y.; Ioinovici, A.: Generation of the large dc gain step-up non-isolated converters in conjunction with renewable energy sources starting from a proposed geometric structure. IEEE Trans. Power Electron. 32(7), 5323–5340 (2017)

    Article  Google Scholar 

  7. Chen, M.; Li, K.; Hu, J.; Ioinovici, A.: Generation of a family of very high dc gain power electronics circuits based on switched-capacitor-inductor cells starting from a simple graph. IEEE Trans. Circuits Syst. 63(12), 2381–2392 (2016)

    Article  Google Scholar 

  8. Cheung, C.; Tan, S.; Tse, C.K.; Ioinovici, A.: On energy efficiency of switched-capacitor converters. IEEE Trans. Power Electron. 28, 2 (2013)

    Article  Google Scholar 

  9. Liang, T.; Chen, S.; Yang, L.; Chen, J.; Ioinovici, A.: Ultra-large gain step-up switched-capacitor dc-dc converter with coupled inductor for alternative sources of energy. IEEE Trans. Circuits Syst. 59(4), 864–874 (2012)

    Article  MathSciNet  Google Scholar 

  10. Tan, S.; et al.: Variable structure modeling and design of switched-capacitor converters. IEEE Trans. Circuits Syst. 56(9), 2132–2142 (2009)

    Article  MathSciNet  Google Scholar 

  11. Tseng, K.; Liang, T.: Novel high efficiency step-up converter. IEE Proc. Electr. Power Appl. 151(2), 182–190 (2004)

    Article  Google Scholar 

  12. Liang, T.; Tseng, K.: Analysis of integrated boost-flyback step-up converter. IEE Proc. Electr. Power Appl. 152(2), 217–225 (2005)

    Article  Google Scholar 

  13. Hsieh, Y.; Chen, J.; Liang, T.; Yang, L.: A novel high step-up dc-dc converter for a microgrid system. IEEE Trans. Power Electron. 26(4), 1127–1136 (2011)

    Article  Google Scholar 

  14. Hsieh, Y.; Chen, J.; Liang, T.; Yang, L.: Analysis and implementation of a novel single-switch high step-up dc–dc converter. IET Power Electron. 5(1), 11–21 (2010)

    Article  Google Scholar 

  15. Hsieh, Y.; Chen, J.; Liang, T.; Yang, L.: Novel high step-up dc-dc converter for distributed generation system. IEEE Trans. Indu. Electron. 60(4), 1473–1482 (2013)

    Article  Google Scholar 

  16. Chen, S.; Lao, M.; Hsieh, Y.; Liang, T.; Chen, K.: A novel switched-coupled-inductor dc-dc step-up converter and its derivatives. IEEE Trans. Ind. Appl. 51(1), 309–314 (2015)

    Article  Google Scholar 

  17. Liang, T.; Lee, J.: Novel high-conversion-ratio high-efficiency isolated bidirectional dc-dc converter. IEEE Trans. Ind. Electron. 62(7), 4492–4503 (2015)

    Article  Google Scholar 

  18. Hwu, K.; Jiang, W.: A KY converter integrated with a SR boost converter and coupled inductor. J. Power Electron. 17(3), 621–631 (2017)

    Article  Google Scholar 

  19. GaN Systems: Top-side cooled 100 V E-mode GaN transistor. GS61008T, Datasheet (2017 July)

  20. GaN Systems: Bottom-side cooled 650 V E-mode GaN transistor. GS66516B, Datasheet (2017 July)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korhan Cengiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cengiz, K. Very High Step-Up Converter with Switched Capacitor and Coupled Inductor. Arab J Sci Eng 45, 1777–1783 (2020). https://doi.org/10.1007/s13369-019-04276-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04276-w

Keywords

Navigation