Skip to main content
Log in

Photodynamic Inactivation of Staphylococcus epidermidis: Application of PEGylated Gold Nanoparticles

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nowadays, implant-related infections are considered as one of the major dangers for human health, and a novel method to ablate the related pathogens is therefore crucial. In this paper, potentials of PEGylated gold nanoparticles to load methylene blue and consequently enhance its effectiveness in photodynamic inactivation of Staphylococcus epidermidis (PTCC1114) were investigated. According to our experimental results, it was shown that PEGylated gold nanoparticles have the ability to load and preserve optical properties of methylene blue. Our studies demonstrated that photodynamic inactivation of the bacteria in an in vitro model using a red laser (630 nm and 100 mW/cm2) and methylene blue or methylene blue-PEGylated gold nanoparticles showed a superiority for the PEGylated gold nanoparticles conjugated with methylene blue. In fact, conjugation of MB with the PEGylated gold nanoparticles avoids dimer formation through preventing direct contact between MB and cellular or plasma components. Based on the results of this paper, PEGylated gold nanoparticles are proposed to improve the photodynamic inactivation of implant-related infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Antoci Jr., V.; Adams, C.S.; Parvizi, J.; Davidson, H.M.; Composto, R.J.; Freeman, T.A.; Wickstrom, E.; Ducheyne, P.; Jungkind, D.; Shapiro, I.M.; Hickok, N.J.: The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials 29(35), 4684–4690 (2008)

    Google Scholar 

  2. Turcheniuk, K.; Hage, C.H.; Spadavecchia, J.; Serrano, A.Y.; Larroulet, I.; Pesquera, A.; Zurutuza, A.; Pisfil, M.G.; Heliot, L.; Boukaert, J.; Boukherroub, R.: Plasmonic photothermal destruction of uropathogenic E. coli with reduced graphene oxide and core/shell nanocomposites of gold nanorods/reduced graphene oxide. J. Mater. Chem. B 3(3), 375–386 (2015)

    Google Scholar 

  3. Szunerits, S.; Boukherroub, R.: Antibacterial activity of graphene-based materials. J. Mater. Chem. B 4(43), 6892–6912 (2016)

    Google Scholar 

  4. Jijie, R.; Dumych, T.; Chengnan, L.; Bouckaert, J.; Turcheniuk, K.; Hage, C.H.; Heliot, L.; Cudennec, B.; Dumitrascu, N.; Boukherroub, R.; Szunerits, S.: Particle-based photodynamic therapy based on indocyanine green modified plasmonic nanostructures for inactivation of a Crohn’s disease-associated Escherichia coli strain. J. Mater. Chem. B 4(15), 2598–2605 (2016)

    Google Scholar 

  5. Jori, G.; Fabris, C.; Soncin, M.; Ferro, S.; Coppellotti, O.; Dei, D.; Fantetti, L.; Chiti, G.; Roncucci, G.: Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg. Med.: Off. J. Am. Soc. Laser Med. Surg. 38(5), 468–481 (2006)

    Google Scholar 

  6. Amini, B.; Kamali, M.; Salouti, M.; Yaghmaei, P.: Spectrophotometric colorimetric and visually detection of Pseudomonas aerugenosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 199, 421–429 (2018)

    Google Scholar 

  7. Amini, A.; Kamali, M.; Amini, B.; Najafi, A.: Enhanced antibacterial activity of imipenem immobilized on surface of spherical and rod gold nanoparticles. J. Phys. D Appl. Phys. (2019). https://doi.org/10.1088/1361-6463/aaef4d

    Article  Google Scholar 

  8. Amini, A.; Kamali, M.; Amini, B.; Njafi, A.; Narmani, A.; Hasani, L.; Rashidiani, J.; Kooshki, H.; Elahi, N.: Bio-barcode technology for detection of Staphylococcus aureus protein A based on gold and iron nanoparticles. Int. J. Biol. Macromol. 124, 1256–1263 (2019)

    Google Scholar 

  9. Shahbazi, R.; Salouti, M.; Amini, B.; Jalilvand, A.; Naderlou, E.; Amini, A.; Shams, A.: Highly selective and sensitive detection of Staphylococcus aureus with gold nanoparticle-based core–shell nano biosensor. Mol. Cell. Probes 41, 8–13 (2018)

    Google Scholar 

  10. Narmani, A.; Rezvani, M.; Farhood, B.; Darkhor, P.; Mohammadnejad, J.; Amini, B.; Refahi, S.; Abdi Goushbolagh, N.: Folic acid functionalized nanoparticles as pharmaceutical carrier in drug delivery systems. Drug Deliv. Res. 80, 404–424 (2019)

    Google Scholar 

  11. Roper, D.K.; Ahn, W.; Hoepfner, M.: Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 111(9), 3636–3641 (2007)

    Google Scholar 

  12. Norman, R.S.; Stone, J.W.; Gole, A.; Murphy, C.J.; Sabo-Attwood, T.L.: Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett. 8(1), 302–306 (2008)

    Google Scholar 

  13. Wang, S.; Singh, A.K.; Senapati, D.; Neely, A.; Yu, H.; Ray, P.C.: Rapid colorimetric identification and targeted photothermal lysis of Salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles. Chem. Eur. J. 16(19), 5600–5606 (2010)

    Google Scholar 

  14. Hu, X.; Zhao, Y.; Hu, Z.; Saran, A.; Hou, S.; Wen, T.; Liu, W.; Ji, Y.; Jiang, X.; Wu, X.: Gold nanorods core/AgPt alloy nanodots shell: a novel potent antibacterial nanostructure. Nano Res. 6(11), 822–835 (2013)

    Google Scholar 

  15. Meeker, D.G.; Jenkins, S.V.; Miller, E.K.; Beenken, K.E.; Loughran, A.J.; Powless, A.; Muldoon, T.J.; Galanzha, E.I.; Zharov, V.P.; Smeltzer, M.S.; Chen, J.: Synergistic photothermal and antibiotic killing of biofilm-associated Staphylococcus aureus using targeted antibiotic-loaded gold nanoconstructs. ACS Infect. Dis. 2(4), 241–250 (2016)

    Google Scholar 

  16. Khlebtsov, B.N.; Tuchina, E.S.; Khanadeev, V.A.; Panfilova, E.V.; Petrov, P.O.; Tuchin, V.V.; Khlebtsov, N.G.: Enhanced photoinactivation of Staphylococcus aureus with nanocomposites containing plasmonic particles and hematoporphyrin. J. Biophotonics 6(4), 338–351 (2013)

    Google Scholar 

  17. Orth, K.; Beck, G.; Genze, F.; Ruck, A.: Methylene blue mediated photodynamic therapy in experimental colorectal tumors in mice. J. Photochem. Photobiol. B 57(2–3), 186–192 (2000)

    Google Scholar 

  18. Kariminezhad, H.; Habibi, M.; Mirzababayi, N.: Nanosized ZSM-5 will improve photodynamic therapy using methylene blue. J. Photochem. Photobiol. B 148, 107–112 (2015)

    Google Scholar 

  19. Harrison, E.; Hamilton, J.W.; Macias-Montero, M.; Dixon, D.: Peptide functionalized gold nanoparticles: the influence of pH on binding efficiency. Nanotechnology 28(29), 29560 (2017)

    Google Scholar 

  20. Hsiao, P.F.; Peng, S.; Tang, T.C.; Lin, S.Y.; Tsai, H.C.: Enhancing the in vivo transdermal delivery of gold nanoparticles using poly (ethylene glycol) and its oleylamine conjugate. Int. J. Nanomed. 11, 1867 (2016)

    Google Scholar 

  21. Zou, X.; Ying, E.; Dong, S.: Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties. Nanotechnology 17(18), 4758 (2006)

    Google Scholar 

  22. Brewer, S.H.; Glomm, W.R.; Johnson, M.C.; Knag, M.K.; Franzen, S.: Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21(20), 9303–9307 (2005)

    Google Scholar 

  23. Kumar, V.; Sharma, N.; Maitra, S.S.: In vitro and in vivo toxicity assessment of nanoparticles. Int. Nano Lett. 7(4), 243–256 (2017)

    Google Scholar 

  24. Pourali, P.; Badiee, S.H.; Manafi, S.; Noorani, T.; Rezaei, A.; Yahyaei, B.: Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron. J. Biotechnol. 29, 86–93 (2017)

    Google Scholar 

  25. Mohamed, M.M.; Fouad, S.A.; Elshoky, H.A.; Mohammed, G.M.; Salaheldin, T.A.: Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int. J. Vet. Sci. Med. 5(1), 23–29 (2017)

    Google Scholar 

  26. Ergaieg, K.; Seux, R.: A comparative study of the photoinactivation of bacteria by meso-substituted cationic porphyrin, rose Bengal and methylene blue. Desalination 246(1–3), 353–362 (2009)

    Google Scholar 

  27. Kariminezhad, H.; Amani, H.; Khanbabaie, R.; Biglarnia, M.: Photodynamic inactivation of E. coli PTCC 1276 using light emitting diodes: application of Rose Bengal and methylene blue as two simple models. Appl. Biochem. Biotechnol. 182(3), 967–977 (2017)

    Google Scholar 

  28. Souza, R.C.; Junqueira, J.C.; Rossoni, R.D.; Pereira, C.A.; Munin, E.; Jorge, A.O.: Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med. Sci. 25(3), 385–389 (2010)

    Google Scholar 

  29. Tardivo, J.P.; Del Giglio, A.; de Oliveira, C.S.; Gabrielli, D.S.; Junqueira, H.C.; Tada, D.B.; Severino, D.; de Fatima Turchiello, R.; Baptista, M.S.: Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005)

    Google Scholar 

  30. Yu, J.; Hsu, C.H.; Huang, C.C.; Chang, P.Y.: Development of therapeutic Au–methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells. ACS Appl. Mater. Interfaces 7(1), 432–441 (2014)

    Google Scholar 

  31. Khan, S.; Alam, F.; Azam, A.; Khan, A.U.: Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int. J. Nanomed. 7, 3245 (2012)

    Google Scholar 

  32. Wu, J.; Wu, J.; Xu, H.; Tang, W.; Kopelman, R.; Philbert, M.A.; Xi, C.: Eradication of bacteria in suspension and biofilms using methylene blue-loaded dynamic nanoplatforms. Antimicrob. Agents Chemother. 53(7), 3042–3048 (2009)

    Google Scholar 

  33. Tuite, E.M.; Kelly, J.M.: New trends in photobiology: photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J. Photochem. Photobiol. B 21(2–3), 103–124 (1993)

    Google Scholar 

  34. Usacheva, M.N.; Teichert, M.C.; Biel, M.A.: Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms. Lasers Surg. Med.: Off. J. Am. Soc. Laser Med. Surg. 29(2), 165–173 (2001)

    Google Scholar 

  35. Daniel, M.C.; Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104(1), 293–346 (2004)

    Google Scholar 

  36. Wang, C.; Singh, P.; Kim, Y.J.; Mathiyalagan, R.; Myagmarjav, D.; Wang, D.; Jin, C.G.; Yang, D.C.: Characterization and antimicrobial application of biosynthesized gold and silver nanoparticles by using Microbacterium resistens. Artif. Cells Nanomed. Biotechnol. 44(7), 1714–1721 (2016)

    Google Scholar 

  37. Lipovsky, A.; Nitzan, Y.; Gedanken, A.; Lubart, R.: Visible light-induced killing of bacteria as a function of wavelength: implication for wound healing. Lasers Surg. Med. 42(6), 467–472 (2010)

    Google Scholar 

  38. Usacheva, M.N.; Teichert, M.C.; Biel, M.A.: The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. J. Photochem. Photobiol. B 71(1–3), 87–98 (2003)

    Google Scholar 

  39. Tang, W.; Xu, H.; Park, E.J.; Philbert, M.A.; Kopelman, R.: Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness. Biochem. Biophys. Res. Commun. 369(2), 579–583 (2008)

    Google Scholar 

  40. Allesen-Holm, M.; Barken, K.B.; Yang, L.; Klausen, M.; Webb, J.S.; Kjelleberg, S.; Molin, S.; Givskov, M.; Tolker-Nielsen, T.: A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59(4), 1114–1128 (2006)

    Google Scholar 

  41. de Bentzmann, S.; Aurouze, M.; Ball, G.; Filloux, A.: FppA, a novel Pseudomonas aeruginosa prepilin peptidase involved in assembly of type IVb pili. J. Bacteriol. 188(13), 4851–4860 (2006)

    Google Scholar 

  42. Giltner, C.L.; van Schaik, E.J.; Audette, G.F.; Kao, D.; Hodges, R.S.; Hassett, D.J.; Irvin, R.T.: The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces. Mol. Microbiol. 59(4), 1083–1096 (2006)

    Google Scholar 

  43. Jenkins, A.T.A.; Buckling, A.; McGhee, M.; Ffrench-Constant, R.H.: Surface plasmon resonance shows that type IV pili are important in surface attachment by Pseudomonas aeruginosa. J. R. Soc. Interface 2(3), 255–259 (2005)

    Google Scholar 

  44. Hamblin, M.R.; Zahra, T.; Contag, C.H.; McManus, A.T.; Hasan, T.: Optical monitoring and treatment of potentially lethal wound infections in vivo. J. Infect. Dis. 187(11), 1717–1726 (2003)

    Google Scholar 

  45. Lambrechts, S.A.G.; Demidova, T.N.; Aalders, M.C.; Hasan, T.; Hamblin, M.R.: Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem. Photobiol. Sci. 4(7), 503–509 (2005)

    Google Scholar 

  46. Zolfaghari, P.S.; Packer, S.; Singer, M.; Nair, S.P.; Bennett, J.; Street, C.; Wilson, M.: In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent. BMC Microbiol. 9(1), 27 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Babol Noshirvani University of Technology [Grant No. BNUT/370542/97]. Also, authors thank Armina Company for their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Kariminezhad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kariminezhad, H., Mousapour, M., Khorram, S. et al. Photodynamic Inactivation of Staphylococcus epidermidis: Application of PEGylated Gold Nanoparticles. Arab J Sci Eng 45, 71–79 (2020). https://doi.org/10.1007/s13369-019-04248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04248-0

Keywords

Navigation