Skip to main content
Log in

Sustainable Synthesis of Hierarchically Porous ZSM-5 Zeolite from Iron Ore Tailings Without Secondary Templates

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Currently, it is difficult to realize environmentally friendly synthesis of zeolites due to the use of the solvent. Therefore, it is of great importance to realize zeolite synthesis from iron ore tailings (IOTs) by a solvent-free method. In this work, in situ formed zeolite crystals are self-assembled and IOTs are converted into hierarchically porous ZSM-5. After that, the products prepared are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption. The results demonstrate that the samples show well-defined crystallinity and have micro-/mesoporous structures. The BET surface area is estimated to be 319.809 m2 g−1 and the external surface area is 92.693 m2 g−1, which indicate the as-synthesized ZSM-5 is a good hierarchically porous material. This work provides a reference for green synthesis of hierarchically porous ZSM-5 from IOT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Osinubi, K.J.; Yohanna, P.; Eberemu, A.O.: Cement modification of tropical black clay using iron ore tailings as admixture. Transp. Geotech. 5, 35 (2015)

    Article  Google Scholar 

  2. Jegatheesan, V.; Liow, J.L.; Shu, L.; Kim, S.H.; Visvanathan, C.: The need for global coordination in sustainable development. J. Clean. Prod. 17, 637 (2009)

    Article  Google Scholar 

  3. Wang, C.L.; Ni, W.; Zhang, S.Q.; Wang, W.K.: Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings. Constr. Build. Mater. 104, 109 (2016)

    Article  Google Scholar 

  4. Cele, E.N.; Maboeta, M.: A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: implications for an iron ore mine site remediation. J. Environ. Manag. 165, 167 (2016)

    Article  Google Scholar 

  5. Zhang, C.Q.; Li, S.Q.: Utilization of iron ore tailing for the synthesis of zeolite A by hydrothermal method. J. Mater. Cycles Waste Manag. 20, 1605 (2017)

    Article  Google Scholar 

  6. Khoshbin, R.; Karimzadeh, R.: Synthesis of mesoporous ZSM-5 from rice husk ash with ultrasound assisted alkali-treatment method used in catalytic cracking of light naphtha. Adv. Powder Technol. 28, 1888 (2017)

    Article  Google Scholar 

  7. Nada, F.M.H.; Larsen, S.C.: Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous Mesoporous Mater. 239, 444 (2017)

    Article  Google Scholar 

  8. Zhang, Q.; Hu, S.; Zhang, L.L.; Wu, Z.J.; Gong, Y.J.; Dou, T.: Facile fabrication of mesopore-containing ZSM-5 zeolite from spent zeolite catalyst for methanol to propylene reaction. Green Chem. 16, 77 (2014)

    Article  Google Scholar 

  9. Liu, X.F.; Zhang, S.J.; Wang, R.W.; Zhang, Z.T.; Qiu, S.L.: Sustainable synthesis of hierarchically porous silicalite-1 zeolite by steam-assisted crystallization of solid raw materials without secondary templates. Chem. Res. Chin. Univ. 34, 350 (2018)

    Article  Google Scholar 

  10. Huang, L.M.; Guo, W.P.; Deng, P.; Xue, Z.Y.; Li, Q.Z.: Investigation of synthesizing MCM-41/ZSM-5 composites. J. Phys. Chem. B 104, 2817 (2000)

    Article  Google Scholar 

  11. Yang, S.T.; Yu, C.X.; Yu, L.L.; Miao, S.; Zou, M.M.; Jin, C.Z.; Zhang, D.Z.: Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites. Angew. Chem. Int. Ed. 56, 1253 (2017)

    Google Scholar 

  12. Groen, J.C.; Moulijn, J.A.; Perez-Ramirez, J.: Desilication: on the controlled generation of mesoporosity in MFI zeolites. J. Mater. Chem. 16, 2121 (2006)

    Article  Google Scholar 

  13. Perez-Ramirez, J.; Abello, S.; Bonilla, A.; Groen, J.C.: Tailored mesoporosity development in zeolite crystals by partial detemplation and desilication. Adv. Funct. Mater. 19, 164 (2009)

    Article  Google Scholar 

  14. Chen, H.; Wydra, J.; Zhang, X.; Lee, P.S.; Wang, Z.; Fan, W.; Tsapatsis, M.: Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. J. Am. Chem. Soc. 133, 12390 (2011)

    Article  Google Scholar 

  15. Zhang, B.; Davis, S.A.; Mann, S.: Starch gel templating of spongelike macroporous silicalite monoliths and mesoporous films. Chem. Mater. 14, 1369 (2002)

    Article  Google Scholar 

  16. Chen, L.; Zhu, S.Y.; Wang, Y.M.; He, M.Y.: One-step synthesis of hierarchical pentasil zeolite microspheres using diamine with linear carbon chain as single template. New J. Chem. 34, 2328 (2010)

    Article  Google Scholar 

  17. Fang, Y.M.; Hu, H.Q.: An ordered mesoporous aluminosilicate with completely crystalline zeolite wall structure. J. Am. Chem. Soc. 128, 10636 (2006)

    Article  Google Scholar 

  18. Sun, C.; Du, J.; Liu, J.; Yang, Y.; Ren, N.; Shen, W.; Xu, H.; Tang, Y.: A facile route to synthesize endurable mesopore containing ZSM-5 catalyst for methanol to propylene reaction. Chem. Commun. 46, 2671 (2010)

    Article  Google Scholar 

  19. Liu, Y.; Zhang, W.; Liu, Z.; Xu, S.; Wang, Y.; Xie, Z.; Han, X.; Bao, X.: Direct observation of the mesopores in ZSM-5 zeolites with hierarchical porous structures by laser-hyperpolarized 129Xe NMR. J. Phys. Chem. C 112, 15375 (2008)

    Article  Google Scholar 

  20. Zhang, P.; Wang, L.; Ren, L.; Zhu, L.; Sun, Q.; Zhang, J.; Meng, X.; Xiao, F.S.: “Solvent-free” synthesis of thermally stable and hierarchically porous aluminophosphates (SF-APOs) and heteroatom-substituted aluminophosphates (SF-MAPOs). J. Mater. Chem. 21, 12026 (2011)

    Article  Google Scholar 

  21. Li, C.L.; Wang, Y.Q.; Shi, B.F.; Ren, J.W.; Liu, X.H.; Wang, Y.G.; Guo, Y.; Guo, Y.L.; Lu, G.Z.: Synthesis of hierarchical MFI zeolite microspheres with stacking nanocrystals. Microporous Mesoporous Mater. 117, 104 (2009)

    Article  Google Scholar 

  22. Ren, L.M.; Wu, Q.M.; Yang, C.G.; Zhu, L.F.; Li, C.J.; Zhang, P.L.; Zhang, H.Y.; Meng, X.J.; Xiao, F.S.: Solvent-free synthesis of zeolites from solid raw materials. J. Am. Chem. Soc. 134, 15173 (2012)

    Article  Google Scholar 

  23. Meng, X.; Xiao, F.S.: Green routes for synthesis of zeolites. Chem. Rev. 114, 1521 (2014)

    Article  Google Scholar 

  24. Jin, Y.; Sun, Q.; Qi, G.; Yang, C.; Xu, J.; Chen, F.; Meng, X.; Deng, F.; Xiao, F.S.: Solvent-free synthesis of silicoaluminophosphate zeolites. Angew. Chem. Int. Ed. Engl. 52, 9172 (2013)

    Article  Google Scholar 

  25. Wu, Q.; Wang, X.; Qi, G.; Guo, Q.; Pan, S.; Meng, X.; Xu, J.; Deng, F.; Fan, F.; Feng, Z.; Li, C.; Maurer, S.; Muller, U.; Xiao, F.S.: Sustainable synthesis of zeolites without addition of both organotemplates and solvents. J. Am. Chem. Soc. 136, 4019 (2014)

    Article  Google Scholar 

  26. Wu, Q.; Liu, X.; Zhu, L.; Ding, L.; Gao, P.; Wang, X.; Pan, S.; Bian, C.; Meng, X.; Xu, J.; Deng, F.; Maurer, S.; Muller, U.; Xiao, F.S.: Solvent-free synthesis of zeolites from anhydrous starting raw solids. J. Am. Chem. Soc. 137, 1052 (2014)

    Article  Google Scholar 

  27. Bordo, A.; Bisio, C.; Marchese, L.: An acid solid layered material. Chem. Mater. 19, 4300 (2007)

    Article  Google Scholar 

  28. Kosuge, K.; Tsunashima, A.: Dispersion of H-magadiite and H-kenyaite particles by ion exchange of H+ with alkali ions. Langmuir 12, 1124 (1996)

    Article  Google Scholar 

  29. Mitamura, Y.; Komori, Y.; Hayashi, S.; Sugahara, Y.; Kuroda, K.: Interlamellar esterification of H-magadiite with aliphatic alcohols. Chem. Mater. 13, 3747 (2001)

    Article  Google Scholar 

  30. Pastore, H.O.; Munsignatti, M.; Mascarenhas, A.J.S.: One-step synthesis of alkyltrimethylammonium-intercalated magadiite. Clays Clay Miner. 48, 224 (2000)

    Article  Google Scholar 

  31. Kamimura, Y.; Itabashi, K.J.; Okubo, T.: Seed-assisted, OSDA-free synthesis of MTW-type zeolite and ‘‘Green MTW’’ from sodium aluminosilicate gel systems. Microporous Mesoporous Mater. 147, 149 (2012)

    Article  Google Scholar 

  32. Wu, Q.; Meng, X.J.; Gao, X.H.; Xiao, F.S.: Solvent-free synthesis of zeolites: mechanism and utility. Acc. Chem. Res. 51, 1396 (2018)

    Article  Google Scholar 

  33. Kordatos, K.; Gavela, S.; Ntziouni, A.; Pistiolas, K.N.; Kyritsi, A.; Kasselouri-Rigopoulou, V.: Solvent-free synthesis of zeolites: mechanism and utility. Microporous Mesoporous Mater. 115, 189 (2008)

    Article  Google Scholar 

  34. Liu, H.T.; Guo, K.X.; Li, X.P.; Gao, X.H.; Cao, L.; Chen, Y.M.; Xu, C.Y.: Understanding and direct strategy to synthesize hydrothermally stable micro-mesoporous aluminosilicates with largely enhanced acidity. Microporous Mesoporous Mater. 188, 108 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Project 51874039), National Science and Technology Major Project (2017ZX07402001) and National Key R&D Program of China (2017YFC0210301). The authors would like to thank Yonghong Tang from Shiyanjia lab for support in the FTIR analysis (www.shiyanjia.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suqin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Li, S. & Zhang, C. Sustainable Synthesis of Hierarchically Porous ZSM-5 Zeolite from Iron Ore Tailings Without Secondary Templates. Arab J Sci Eng 45, 187–196 (2020). https://doi.org/10.1007/s13369-019-04199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04199-6

Keywords

Navigation