Skip to main content
Log in

Parametric Study of COD Reduction from Textile Processing Wastewater Using Adsorption on Cypress Cone-Based Activated Carbon: An Analysis of a Doehlert Response Surface Design

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the performance of a cypress cone-based activated carbon was tested for the COD reduction from industrial textile wastewater. These cypress cones were locally collected after maturation. The Doehlert response surface design was used to simulate and optimize the decrease in COD in treated wastewater. The dominant parameters for COD removal in the effluent were the temperature, the amount of adsorbent and the pH of the initial solution. The obtained model fit the experimental results with high precision (R2 > 0.93) and low Fisher probability (< 0.0001), which reflected a strong statistical significance. Additionally, the model shows the order of parameters importance as follows: adsorbent amount > temperature > initial pH. Under the optimal conditions predicted by the regression, a maximum COD reduction could be obtained with a temperature of 319 K at pH 12 and an activated carbon concentration of 1.144 g L−1 after 1 h treatment. Meanwhile, the designed adsorbent realized the decrease in colour (80.4%), COD (19%) and turbidity (67.1%) of wastewater. It could be concluded that cypress cone-based activated carbon is promising in the treatment of textile wastewater. The increase in COD removal rate through hybridization of processes is being considered for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Larous, S.; Meniai, A.H.; Lehocine, M.B.: Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination 185, 401–407 (2005)

    Article  Google Scholar 

  2. Rao, M.M.; Ramesh, A.; Rao, G.P.C.; Seshaiah, K.: Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceibapentandra hulls. J. Hazard. Mater. 129, 123–129 (2006)

    Article  Google Scholar 

  3. Gisi, S.D.; Lofrano, G.; Grassi, M.; Notarnicola, M.: Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain. Mater. Technol. 9, 10–40 (2016)

    Google Scholar 

  4. Töre, G.Y.; Meriç, S.; Lofrano, G.; De Feo, G.: Removal of trace pollutants from wastewater in constructed wetlands. In: Lofrano, G. (ed.) Emerging Compounds Removal from Wastewater, pp. 39–58. Springer Briefs in Molecular ScienceSpringer, Dordrecht (2012)

    Chapter  Google Scholar 

  5. Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A.A.: Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem. Eng. J. 286, 640–662 (2016)

    Article  Google Scholar 

  6. Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B.: A critical review on textile wastewater treatments: possible approaches. J. Environ. Manag. 182, 351–366 (2016)

    Article  Google Scholar 

  7. Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Perez, J.A.S.; Ricardo, S.M.; Malato, S.: The combination of nano-filtration membranes and AOPs for removing micro-contaminants cost effective in real municipal wastewater effluents. Environ. Sci. Water Res. Technol. 2, 511–520 (2016)

    Article  Google Scholar 

  8. Kanagaraj, J.; Senthilvelan, T.; Panda, R.C.: Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Technol. Environ. Policy. 17, 1443–1456 (2015)

    Article  Google Scholar 

  9. Oller, A.; Malato, S.; Sánchez-Pérez, J.A.: Combination of advanced oxidation processes and biological treatments for wastewater decontamination. A review. Sci. Total Environ. 409, 4141–4166 (2011)

    Article  Google Scholar 

  10. Fakhri, A.; Adami, S.: Adsorption and thermodynamic study of Cephalosporins antibiotics from aqueous solution onto MgO nanoparticles. J. Taiwan Inst. Chem. Eng. 45, 1001–1006 (2014)

    Article  Google Scholar 

  11. Fakhri, A.; Behrouz, S.: Improved uptake of steroid hormone from aqueous solution using γ-Fe2O3/NiO nanocomposites. J. Ind. Eng. Chem. 26, 61–66 (2015)

    Article  Google Scholar 

  12. Huang, Z.; Li, Y.; Chen, W.; Shi, J.; Zhang, N.; Wang, X.; Li, Z.; Gao, L.; Zhang, Y.: Modified bentonite adsorption of organic pollutants of dye wastewater. Mater. Chem. Phys. 202, 266–276 (2017)

    Article  Google Scholar 

  13. Burakova, A.E.; Galunin IV, E.V.; Burakovaa, A.E.Kucherovaa; Agarwalb, S.; Tkacheva, A.G.; Gupta, V.K.: Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol. Environ. Saf. 148, 702–712 (2018)

    Article  Google Scholar 

  14. Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A.: Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965–977 (2008)

    Google Scholar 

  15. Öztürk, D.; Şahan, T.: Design and optimization of Cu(II) adsorption conditions from aqueous solutions by low-cost adsorbent pumice with response surface methodology. Pol. J. Environ. Stud. 4, 1–24 (2015)

    Google Scholar 

  16. Su, S.N.; Nie, H.L.; Zhu, L.M.; Chen, T.X.: Optimization of adsorption conditions of papain on dye affinity membrane using response surface methodology. Bioresour. Technol. 100, 2336–2340 (2009)

    Article  Google Scholar 

  17. Sugashini, S.; Begum, K.M.M.S.: Optimization using central composite design (CCD) for the biosorption of Cr(VI) ions by cross linked chitosan carbonized rice husk (CCACR). Clean Technol. Environ. Policy 15, 293–302 (2013)

    Article  Google Scholar 

  18. Chi, G.; Hu, S.; Yang, Y.; Chen, T.: Response surface methodology with prediction uncertainty: a multi-objective optimisation approach. Chem. Eng. Res. Des. 90, 1235–1244 (2012)

    Article  Google Scholar 

  19. Şahan, T.; Öztürk, D.: Investigation of Pb(II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology. Clean Technol. Environ. Policy 16, 819–831 (2014)

    Article  Google Scholar 

  20. Markandeya,; Sing, A.; Shukla, S.P.; Mohan, D.; Singh, N.B.; Bhargava, D.S.; Shukla, R.; Pandey, G.; Yadav, V.P.; Kisku, G.C.: Adsorptive capacity of sawdust for the adsorption of MB dye and designing of two-stage batch adsorber. Cogent Environ. Sci. 1, 1075856 (2015)

    Article  Google Scholar 

  21. Raymond, H.M.; Montgomery, D.C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiment. Wiley, New York (2002)

    MATH  Google Scholar 

  22. Goksungur, Y.: Optimization of the production of chitosan from beet molasses by response surface methodology. J. Chem. Technol. Biotechnol. 79, 974–981 (2004)

    Article  Google Scholar 

  23. Gupta, V.K.; Agarwal, S.; Asif, M.; Fakhri, A.; Sadeghi, N.: Application of response surface methodology to optimize the adsorption performance of a magnetic graphene oxide nanocomposite adsorbent for removal of methadone from the environment. J. Colloid Interface Sci. 497, 193–200 (2017)

    Article  Google Scholar 

  24. Fakhri, A.: Investigation of mercury (II) adsorption from aqueous solution onto copper oxide nanoparticles: optimization using response surface methodology. Process Saf. Environ. Prot. 93, 1–8 (2015)

    Article  Google Scholar 

  25. Doehlert, D.H.: Uniform shell designs. J. R. Stat. Soc. 19, 231–239 (1970)

    Google Scholar 

  26. Hellal, F.; Dachraoui, M.: Application of Doehlert matrix to the study of flow injection procedure for selenium (IV) determination. Talanta 63, 1089–1094 (2004)

    Article  Google Scholar 

  27. Maamara, M.; Fezeic, R.; Souissid, N.; Bellakhal, N.: Application of Doehlert matrix to determine the optimal conditions of bromothymol blue discoloration with fenton process. Desalin. Water Treat. 83, 244–252 (2017)

    Article  Google Scholar 

  28. Khellouf, M.; Chemini, R.; Salem, Z.; Khodja, M.; Zeriri, D.: Optimization of preparation and application of activated carbon derived from cypress cones. Algerian J. Environ. Sci. Technol. 5(1), 841–851 (2019)

    Google Scholar 

  29. Prahas, D.; Kartika, Y.; Indraswati, N.; Ismadji, S.: Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization. Chem. Eng. J. 140(1-3), 32–42 (2008)

    Article  Google Scholar 

  30. Pescod, M.B.: Wastewater treatment and use in agriculture - FAO irrigation and drainage paper 47. F.A.A.O.O.T.U. NATIONS, Rome (1992)

    Google Scholar 

  31. Saygili, H.; Güzel, F.; Onal, Y.: Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. J. Clean. Prod. 93, 83–93 (2015)

    Article  Google Scholar 

  32. Mohammad-pajooha, E.; Turcios, A.E.; Cuff, G.; Weichgrebe, D.; Rosenwinkel, K.-H.; Vedenyapina, M.D.; Sharifullina, L.R.: Removal of inert COD and trace metals from stabilized landfill leachate by granular activated carbon (GAC) adsorption. J. Environ. Manag. 228, 189–196 (2018)

    Article  Google Scholar 

  33. Shen, Lu; Wang, Wei; Li, Tong; Cui, Yuezong; Wang, Bin; Gang, Yu; Wang, Xinhua; Wei, Dong; Xiao, Jianzhong; Denga, Shubo: Powdered activated coke for COD removal in the advanced treatment of mixed chemical wastewaters and regeneration by Fenton oxidation. Chem. Eng. J. 371, 631–638 (2019)

    Article  Google Scholar 

  34. Alharbi, S.K.; Shafiquzzaman, M.; Hu Haider, S.S.; AlSaleem, A.R.Ghumman: Treatment of ablution greywater for recycling by alum coagulation and activated carbon adsorption. Arab. J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-019-03834-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meryem Khellouf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khellouf, M., Chemini, R., Salem, Z. et al. Parametric Study of COD Reduction from Textile Processing Wastewater Using Adsorption on Cypress Cone-Based Activated Carbon: An Analysis of a Doehlert Response Surface Design. Arab J Sci Eng 44, 10079–10086 (2019). https://doi.org/10.1007/s13369-019-04188-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04188-9

Keywords

Navigation