Skip to main content
Log in

Structural Performance of Super-Long-Span Cable-Stayed Bridges with Steel and CFRP Hybrid Cables

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents an investigation of super-long-span cable-stayed bridges with hybrid cables, including steel and carbon fiber-reinforced polymer (CFRP) cables arranged in the short- and long-cable regions, respectively. Three 1600-m-span cable-stayed bridges with steel, CFRP and hybrid cables are first designed. Their static and dynamic structural performance was subsequently investigated by finite element analysis. Simulation results demonstrate that arranging CFRP cables in the long-cable regions can fully utilize the advantage of CFRP through examining their equivalent elastic modulus, load-carrying efficiency ratio and self-weight/stress ratio. The hybrid cable-stayed bridge exhibits the higher stiffness enhancement in comparison with the CFRP cable-stayed bridge. In comparison with the CFRP cables, the use of hybrid cables is able to increase the frequency for the first-order vertical mode, thus overcoming the weakness of the CFRP cable-stayed bridge in terms of stiffness. In addition, the natural frequencies of CFRP cables are much higher than the low-order vertical vibration frequencies of cable-stayed bridge, which is beneficial to reducing the probability of cable–deck coupling vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Meier, U.: Proposal for a carbon fibre reinforced composite bridge across the strait of Gibraltar at its narrowest site. Proc. Inst. Mech. Eng. 201(B2), 73–78 (1987)

    Article  Google Scholar 

  2. Meier, U.; Meier, H.: CFRP finds use in cable support for bridge. Mod. Plast. 73(4), 87–91 (1996)

    Google Scholar 

  3. Meier, U.: Carbon fiber reinforced polymer cables: Why? Why Not? What If? Arab. J. Sci. Eng. 37(2), 399–411 (2012)

    Article  Google Scholar 

  4. Lv, Z.T.; Mei, K.H.: First application of CFRP cables for a cable-stayed bridge in China. China Civ. Eng. J. 40(1), 50–59 (2007). (in Chinese)

    Google Scholar 

  5. Mei, K.H.; Seracino, R.; Lv, Z.T.: An experimental study on bond-type anchorages for carbon fiber-reinforced polymer cables. Const. Build. Mater. 106, 584–591 (2016)

    Article  Google Scholar 

  6. Khalifa, M.A.; Hodhod, O.A.; Zaki, M.A.: Analysis and design methodology for an FRP cable-stayed pedestrian bridge. Compos. Part B Eng. 27(3), 307–317 (1996)

    Article  Google Scholar 

  7. Wu, Z.S.; Wang, X.: Investigation on a thousand-meter scale cable-stayed bridge with fiber composite cables. In: Proceedings of the Fourth International Conference on FRP Composites in Civil Engineering (CICE-4), Zurich, Switzerland, pp. 22–24 (2008)

  8. Cheng, S.; Lau, D.T.: Impact of using CFRP Cables on the Dynamic Behavior of Cable-Stayed Bridges. IABSE REPORTS, Budapest, Hungary, pp. 19–26 (2006)

  9. Adanur, S.; Günaydın, M.; Altunısık, A.C.: Dynamic behavior of a cable stayed bridge using CFRP cables. In: Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Vienna, Austria, pp. 28–30 (2013)

  10. Xie, X.; Gao, J.S.; Kou, C.H.; Huang, J.Y.: Dynamic characteristics of long-span cable-stayed bridges using carbon fiber composite cable. J. Zhejiang Univ.-Sci. A 39(5), 728–733 (2005)

    Google Scholar 

  11. Xie, X.; Li, X.; Shen, Y.: Static and dynamic characteristics of a long-span cable-stayed bridge with CFRP cables. Materials 7(6), 4854–4877 (2014)

    Article  Google Scholar 

  12. Fang, Z.; Ren, L.; Fan, F.: Behaviors of super-long span prestressed cable-stayed bridge with CFRP cables and UHPC girder. Eng. Sci. 14(7), 53–59 (2012). (in Chinese)

    Google Scholar 

  13. Yang, Y.; Wang, X.; Wu, Z.: Evaluation of the static and dynamic behaviors of long-span suspension bridges with FRP cables. J. Bridge Eng. 21(12), 06016008 (2016)

    Article  Google Scholar 

  14. Xie, G.H.; Yin, J.; Liu, R.G.: Experimental and numerical investigation on the static and dynamic behaviors of cable-stayed bridges with CFRP cables. Compos. Part B Eng. 111, 235–242 (2017)

    Article  Google Scholar 

  15. Mei, K.H.; Sun, S.J.; Jin, G.Q.; Sun, Y.M.: Static and dynamic mechanical properties of long-span cable-stayed bridges using CFRP cables. Adv. Civ. Eng. 2017, 1–11 (2017). https://doi.org/10.1155/2017/6198296

    Article  Google Scholar 

  16. Kao, C.; Kou, C.; Xie, X.: Static instability analysis of long-span cable-stayed bridges with carbon fiber composite cable under wind load. Tamkang J. Sci. Eng. 9(2), 89–95 (2006). (in Chinese)

    Google Scholar 

  17. Zhang, X.J.; Ying, L.D.: Aerodynamic stability of cable-supported bridges using CFRP cables. J. Zhejiang Univ.-Sci. A 8(5), 693–698 (2007)

    Article  Google Scholar 

  18. Wang, X.; Wu, Z.: Dynamic behavior of thousand-meter scale cable-stayed bridge with hybrid FRP cables. J. Appl. Mech. JSCE 12, 935–943 (2009)

    Google Scholar 

  19. Seible, F.; Karbhari, V.M.: Fiber-reinforced polymer composites for civil infrastructure in the USA. Struct. Eng. Inter. 9(4), 274–277 (1999)

    Article  Google Scholar 

  20. Swiatecki, S.: Building better bridges with CFRP. Reinf. Plast. 42(3), 44–45, 47 (1998)

  21. Nik, W.; Pascal, K.: Carbon fiber products (CFP): a construction material for the next century. In: Proceedings of the 13th FIP Congress, pp. 69–72 (1998)

  22. Scalea, F.L.D.; Karbhari, V.M.; Seible, F.: The I-5/Gilman advanced technology bridge project. In: The International Society for Optical Engineering, Proceedings of SPIE, Newport Beach, CA, 05-09 3988 (2000)

  23. Liu, Y.; Zwingmann, B.; Schlaich, M.: Carbon fiber reinforced polymer for cable structures—a review. Polymers 7(10), 2078–2099 (2015)

    Article  Google Scholar 

  24. Schmidt, J.W.; Bennitz, A.; Taljsten, B.; Goltermann, P.; Pedersen, H.: Mechanical anchorage of FRP tendons—a literature review. Constr. Build. Mater. 32, 110–121 (2012)

    Article  Google Scholar 

  25. Mei, K.H.; Sun, S.J.; Li, B.; Sun, Y.M.; Jin, G.Q.: Experimental investigation on the mechanical properties of a bond-type anchor for carbon fiber reinforced polymer tendons. Compos. Struct. 201, 193–199 (2018)

    Article  Google Scholar 

  26. Wang, X.; Wu, Z.S.: Integrated high-performance thousand-metre scale cable-stayed bridge with hybrid FRP cables. Compos. Part B Eng. 41, 166–175 (2010)

    Article  Google Scholar 

  27. Wang, X.; Wu, Z.S.: Evaluation of FRP and hybrid FRP cables for super long-span cable-stayed bridges. Compos. Struct. 92(10), 2582–2590 (2010)

    Article  Google Scholar 

  28. Wang, X.; Wu, Z.S.; Wu, G.: Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge. Compos. Part B Eng. 44, 184–192 (2013)

    Article  Google Scholar 

  29. Xiong, W.; Cai, C.S.; Xiao, R.; Deng, L.: Concept and analysis of stay cables with a CFRP and steel composite section. KSCE J. Civ. Eng. 16(1), 107–117 (2012)

    Article  Google Scholar 

  30. Cai, H.; Aref, A.J.: On the design and optimization of hybrid carbon fiber reinforced polymer-steel cable system for cable-stayed bridges. Compos. Part B Eng. 68(2), 146–152 (2015)

    Article  Google Scholar 

  31. Lv, Z.T.; Mei, K.H.; Wang, P.; Zheng, H.Y.: FRP-Concrete Bridge Structures. Phoenix Science Press, Nanjing (2015). (in Chinese)

    Google Scholar 

  32. Nagai, M.; Fujino, Y.; Yamaguchi, H.; Iwasaki, E.: Feasibility of a 1400 m span steel cable-stayed bridge. J. Bridge. Eng. 9(5), 444–452 (2004)

    Article  Google Scholar 

  33. Mei, K.H.; Lv, Z.T.: Static characteristic analysis of CFRP cables. China J. Highw. Trans. 17(2), 43–45 (2004). (in Chinese)

    Google Scholar 

  34. Gimsing, N.J.: Cable Supported Bridges: Concept and Design. Wiley, New York (1997)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 51778059) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuihua Mei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Mei, K., Sun, Y. et al. Structural Performance of Super-Long-Span Cable-Stayed Bridges with Steel and CFRP Hybrid Cables. Arab J Sci Eng 45, 3569–3579 (2020). https://doi.org/10.1007/s13369-019-04166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04166-1

Keywords

Navigation