Skip to main content

Advertisement

Log in

Assessment of Trapping Mechanisms of CO2 Sequestration and Optimization of Key Process Parameters in a Deep Saline Aquifer Using Reservoir Simulation and Response Surface Methodology

  • Research Article - Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Deep saline aquifers are perhaps one of the most ubiquitous sites available for CO2 sequestration. In this study, a compositional reservoir simulator was used to evaluate the effects of various CO2 trapping mechanisms in a saline aquifer which includes structural, solubility and mineral trapping. CO2 was injected at a rate of 4000 m3/day at the bottom of the aquifer for 50 years. The results indicate that structural trapping dominated for initial 3 years, after which the maximum gas saturation and pressure was reached. During solubility trapping, the gas saturation decreased by more than 70% of the maximum saturation. Mineral trapping decreased saturation further by another 10%. In another approach, the effect of wastewater injection following injection of CO2 was evaluated. The numerical simulations show reduction in both the amount of mobile CO2 and its upward migration. Among the different trapping mechanisms, solubility trapping is found to be the most vital one. Multivariate analysis and optimization of the responses, viz. average gas saturation and average pressure rise, were carried out using response surface methodology. Optimized results were obtained for efficient CO2 sequestration with lesser mobile CO2 and pressure rise at lower values of injection rate (1000 m3/day), injection time (50 years), vertical-to-horizontal permeability ratio, Kv/Kh (0.016), and residual gas saturation (0.4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alphen, K.V.; Voorst, Q.V.V.T.; Hekkert, M.P.; Smits, R.E.H.M.: Societal acceptance of carbon capture and storage technologies. Energy Policy 35, 4368–4380 (2007)

    Article  Google Scholar 

  2. Aydin, G.; Karakurt, I.; Aydiner, K.: Evaluation of geologic storage options of CO2: applicability cost storage capacity and safety. Energy Policy 38, 5072–5080 (2010)

    Article  Google Scholar 

  3. Bachu, S.: Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Convers. Manag. 41, 953–970 (2000)

    Article  Google Scholar 

  4. Mo, S.; Akovoll, I.: Modeling long-term CO2 storage in aquifer with a black-oil reservoir simulator. In: Society of Petroleum Engineers Journal, SPE 93951 (2005)

  5. Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M.: CO2 storage capacity estimation: methodology and gaps. Int. J. Greenh. Gas Control 1, 430–443 (2007)

    Article  Google Scholar 

  6. De Silva, G.P.D.; Ranjith, P.G.; Perera, M.S.A.: Geochemical aspects of CO2 sequestration in deep saline aquifers: a review. Fuel 155, 128–143 (2015)

    Article  Google Scholar 

  7. Berg, S.; Oedai, S.; Ott, H.: Unsteady-state CO2-brine displacement in sandstone: relative permeability and mass transfer for saturated and unsaturated phases Flows and mechanics in natural porous media from pore to field scale. In: Pore 2 Field IFP Energies Nouvelles (France) (2011)

  8. Flett, M.; Gurton R.; Taggart, I.: The function of gas–water relative permeability hysteresis in the sequestration of carbon dioxide in saline formations. In: Society of Petroleum Engineers, SPE 88485 (2004)

  9. Flett, M.; Gurton, R.; Geoff, W.: Heterogeneous saline formations for carbon dioxide disposals: impact of varying heterogeneity on containment and trapping. J. Pet. Sci. Eng. 57, 106–118 (2007)

    Article  Google Scholar 

  10. Cole, D.R.; Chialvo, A.A.; Rother, G.; Vlcek, L.; Cummings, P.T.: Supercritical fluid behavior at nanoscale interfaces: implications for CO2 sequestration in geologic formations. Philos. Mag. 90, 2339–2363 (2010)

    Article  Google Scholar 

  11. Schnaar, G.; Digiulio, D.C.: Computational modeling of the geologic sequestration of carbon dioxide. Vadose Zone J. 8, 389–403 (2009)

    Article  Google Scholar 

  12. Fang, Y.; Baojun, B.; Dazhen, T.; Norman, S.D.; Wronkiewicz, D.: Characteristics of CO2 sequestration in saline aquifers. J. Pet. Sci. Eng. 7, 83–92 (2010)

    Google Scholar 

  13. Nghiem, L.; Shrivastava, V.; Kohse, B.; Hassam, M.; Yang, C.: Simulation of trapping processes for CO2 storage in saline aquifers. In: Computer Modeling Group. SPE Reservoir Simulation Symposium, 2–4 Feb, The Woodlands, TX. Society of Petroleum Engineers Journal, SPE-119080-MS (2009)

  14. Shamsiri, H.; Jafarpour, B.: Controlled CO2 injection into heterogeneous geologic formations for improved solubility and residual trapping. Water Resour. Res. 48, 1–15 (2012)

  15. Szulczewski, M.L.; MacMinn, C.W.; Herzog, H.J.; Juanes, R.: Lifetime of carbon capture and storage as a climate-change mitigation technology. Proc. Natl. Acad. Sci. 109(14), 5185–5189 (2012)

    Article  Google Scholar 

  16. Gasda, S.E.; Nordbotten, J.M.; Celia, M.A.: Vertically averaged approaches for CO2 migration with solubility trapping. Water Resour Res. 47, W05528 (2011). https://doi.org/10.1029/2010wr009075

    Article  Google Scholar 

  17. Krevor, S.; Blunt, M.J.; Benson, S.M.; Pentland, C.H.; Reynolds, C.; Menhali, A.A.; Niu, B.: Capillary trapping for geologic carbon dioxide storage—from pore scale physics to field scale implications. Int. J. Greenh. Gas Control 40, 221–237 (2015)

    Article  Google Scholar 

  18. Kumar, A.; Noh, M.; Pope, G.A.; Sepehrnoori, K.; Bryant, S.; Lake, L.W.: Reservoir simulation of CO2 storage in deep saline aquifers. In: Society of Petroleum Engineers Journal, SPE 89343 (2004)

  19. Ahmadi, M.A.: Modeling solubility of carbon dioxide in reservoir brine via smart techniques: application to carbon dioxide storage. Int. J. Low-Carbon Technol. 11, 441–454 (2016)

    Google Scholar 

  20. Lee, H.; Seo, J.; Lee, Y.; Jung, W.; Sung, W.: Regional CO2 solubility trapping potential of a deep saline aquifer in Pohang basin, Korea. Geosci. J. 20(4), 561 (2016)

    Article  Google Scholar 

  21. Fagerlund, F.; Niemi, A.; Bensabat, J.; Shtivelman, V.: Interwell field test to determine in situ CO2 trapping in a deep saline aquifer: modelling study of the effects of test design and geological parameters. In: European Geosciences Union General Assembly 2013, EGU Division Energy, Resources & the Environment, ERE. Energy Procedia, vol. 40, pp. 554–563 (2013)

  22. Echeverry, J.L.L.; Acherman, S.R.; Lopez, E.A.: Peng-Robinson equation of state: 40 years through cubics. Fluid Phase Equilibr. 447, 39–71 (2017)

    Article  Google Scholar 

  23. Han, S.J.; Lin, H.M.; Chao, K.C.: Vapour-liquid equilibrium of molecular fluid mixtures by equation of state. Chem. Eng. Sci. 43, 2327–2367 (1988)

    Article  Google Scholar 

  24. Dahm, D.K.; Visco, P.: Fundamentals of Chemical Engineering Thermodynamics, SI edn. Cengage Learning, Boston (2015)

    Google Scholar 

  25. Rowe, M.; Chou, S.: Pressure-volume-temperature-concentration relation of aqueous NaCl solutions. J. Phys. Chem. Ref. Data. 15(1), 61–66 (1970)

    Article  Google Scholar 

  26. Kestin, J.; Khalifa, E.; Correia, J.: Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20–150°C and pressure range 0.1–35 MPa. J. Phys. Chem. Ref. Data. 10(1), 71–87 (1981)

    Article  Google Scholar 

  27. Li, Y.K.; Nghiem, L.X.: Phase equilibria of oil, gas and water/brine mixtures from a cubic equation of state and Henry’s law. Can. J. Chem. Eng. 64(3), 486–496 (1986)

    Article  Google Scholar 

  28. Ayre, A.; Ghude, K.; Mane, P.; Nemade, M.; Gosavi, S.; Pathare, A.; Lad, A.: Supercritical fluid extraction—a green paradigm in the area of separation science. Asian J. Biomed. Pharm. Sci. 3(23), 1–7 (2013)

    Google Scholar 

  29. Bennion, D.B.; Bachu, S.: Drainage and imbibition CO2/brine relative permeability curves at reservoir conditions for carbonate formations. In: Society of Petroleum Engineers, SPE 134028 (2005)

  30. Alshuhail, A.A.; Alshuhail, D.C.; Isaac, L.H.: Geophysical characterization of the Devonian Nisku Formation for the Wabamun area CO2 sequestration project (WASP), Alberta, Canada. Energy Procedia 4, 4696–4703 (2011)

    Article  Google Scholar 

  31. Yetilmezsoy, K.; Demirel, S.; Vanderbei, R.J.: Response surface modeling of Pb(II) removal from aqueous solution by Pistaciavera L: Box–Behenken experimental design. J. Hazard. Mater. 171, 551–562 (2009)

    Article  Google Scholar 

  32. Ferreira, S.L.; Bruns, R.E.; da Silva, E.G.P.; dos Santos, W.N.L.; Quintella, C.M.; David, J.M.; de Andrade, J.B.; Breitkreitz, M.C.; Jardim, I.C.S.F.; Neto, B.B.: Statistical designs and response surface techniques for the optimization of chromatographic systems. J. Chromatogr. A. 1158, 2–14 (2007)

    Article  Google Scholar 

  33. Sendra, J.M.B.; Rodríguez, S.P.L.C.; Campana, A.M.G.; Lopez, E.M.A.: Optimizing analytical methods using sequential response surface methodology: application to the pararosaniline determination of formaldehyde. Fresenius J. Anal. Chem. 369, 715–718 (2001)

    Article  Google Scholar 

  34. Tian, L.; Yang, Z.; Zung, B.; Joodaki, S.; Erlstrom, M.; Zhou, Q.; Niemi, A.: Integrated simulations of CO2 spreading and pressure response in the multilayer saline aquifer of South Scania Site, Sweden. Greenh. Gases Sci. Control 6(4):1–12 (2017). https://doi.org/10.1002/ghg.1583

    Article  Google Scholar 

  35. Zhao, B.; MacMinn, C.W.; Juanes, R.: Residual trapping, solubility trapping and capillary pinning complement each other to limit CO2 migration in deep saline aquifers. Energy Procedia 63, 3833–3839 (2014)

    Article  Google Scholar 

  36. Soltanian, M.R.; Amooie, M.A.; Dai, Z.; Cole, D.; Moortgat, J.: Critical dynamics of gravito-convective mixing in geological carbon sequestration. Sci. Rep. 6, 35921 (2016). https://doi.org/10.1038/srep35921

    Article  Google Scholar 

  37. Vilarrasa, V.; Carrera, J.: Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak. Proc. Natl. Acad. Sci. U.S.A. 112(19), 5938–5943 (2015). https://doi.org/10.1073/pnas.1413284112/-/DCSupplemental

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankita Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Dutta, P. Assessment of Trapping Mechanisms of CO2 Sequestration and Optimization of Key Process Parameters in a Deep Saline Aquifer Using Reservoir Simulation and Response Surface Methodology. Arab J Sci Eng 44, 10421–10431 (2019). https://doi.org/10.1007/s13369-019-04163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04163-4

Keywords

Navigation