Skip to main content
Log in

Flow of Micropolar–Newtonian Fluids through the Composite Porous Layered Channel with Movable Interfaces

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, we have discussed the effect of width of the layers on the micropolar–Newtonian fluid flow through the porous layered rectangular pipe. The mathematical model of our problem represents the sandwiching of non-Newtonian fluid between the Newtonian fluid layers. The horizontal porous channel is divided into three porous layers with different permeabilities, and the problem is modeled in such a way that the width of each layer can be varied. The flow in the respective porous region took place due to the constant pressure gradient along the direction of the flow. Brinkman equation has been used for the fluids flowing through the porous medium. The problem is solved analytically, and the expressions for the flow velocity, volumetric flow rate and shearing stresses at the walls of the horizontal plates are obtained in the closed form. The impact of width of the middle porous layer is seen on the mean flow velocity, velocity profile, interfacial velocities and interfacial shear stresses. The present work has a setup that will be useful in oil recovery process, filtration of the contaminated ground water and some medical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yuan, S.W.: Foundations of Fluid Mechanics. Prentice Hall, London (1970)

    MATH  Google Scholar 

  2. Coutelieris, F.A.; Delgado, J.M.P.Q.: Transport Processes in Porous Media. Springer, Berlin (2012)

    Google Scholar 

  3. Yadav, P.K.; Deo, S.; Yadav, M.K.; Filippov, A.: On hydrodynamic permeability of a membrane built up by porous deformed spheroidal particles. Colloid J. 75(5), 611–622 (2013)

    Google Scholar 

  4. Yadav, P.; Tiwari, A.; Singh, P.: Hydrodynamic permeability of a membrane built up by spheroidal particles covered by porous layer. Acta Mech. 229(4), 1869–1892 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Yadav, P.; Tiwari, A.; Deo, S.; Filippov, A.; Vasin, S.: Hydrodynamic permeability of membranes built up by spherical particles covered by porous shells: effect of stress jump condition. Acta Mech. 215, 193–209 (2010)

    MATH  Google Scholar 

  6. Hamdan, M.H.: Single-phase flow through porous channels a review of flow models and channel entry conditions. Appl. Math. Comput. 62, 203–222 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Rudraiah, N.: Coupled parallel flows in a channel and a bounding porous medium of finite thickness. J. Fluids Eng. 107(3), 322–329 (1985)

    MathSciNet  Google Scholar 

  8. Kaviany, M.: Laminar flow through a porous channel bounded by isothermal parallel plates. Int. J. Heat Mass Transf. 28(4), 851–858 (1985)

    Google Scholar 

  9. Chamkha, A.J.: On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions. Int. J. Heat Mass Transf. 45(12), 2509–2525 (2002)

    MATH  Google Scholar 

  10. Umavathi, J.C.; Kumar, J.P.; Chamkha, A.J.; Pop, I.: Mixed convection in a vertical porous channel. Trans. Porous Med. 61(3), 315–335 (2005)

    MathSciNet  Google Scholar 

  11. Umavathi, J.C.; Chamkha, A.J.; Sridhar, K.S.R.: Generalized plain Couette flow and heat transfer in a composite channel. Trans. Porous Med. 85(1), 157–169 (2010)

    Google Scholar 

  12. Umavathi, J.C.; Chamkha, A.J.; Mateen, A.; Al-Mudhaf, A.: Oscillatory flow and heat transfer in a horizontal composite porous medium channel. Int. J. Heat Technol. 25, 75–86 (2006)

    MATH  Google Scholar 

  13. Umavathi, J.C.; Chamkha, A.J.; Mateen, A.; Al-Mudhaf, A.: Unsteady oscillatory flow and heat transfer in a horizontal composite porous medium channel. Nonlinear Anal. Model. Control 14(3), 397–415 (2009)

    MATH  Google Scholar 

  14. Chamkha, A.J.; Khaled, A.R.A.: Similarity solutions for hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media. Int. J. Numer. Methods Heat Fluid Flow 10(1), 94–115 (2000)

    MATH  Google Scholar 

  15. Ismael, M.A.; Pop, I.; Chamkha, A.J.: Mixed convection in a lid-driven square cavity with partial slip. Int. J. Therm. Sci. 82, 47–61 (2014)

    Google Scholar 

  16. Chamkha, A.J.: Double-diffusive convection in a porous enclosure with cooperating temperature and concentration gradients and heat generation or absorption effects. Numer. Heat Transf. Part A Appl. 41(1), 65–87 (2002)

    Google Scholar 

  17. Magyari, E.; Chamkha, A.J.: Exact analytical results for the thermosolutal MHD Marangoni boundary layers. Int. J. Therm. Sci. 47(7), 848–857 (2008)

    Google Scholar 

  18. Yadav, P.K.: Slow motion of a porous cylindrical shell in a concentric cylindrical cavity. Meccanica 48(7), 1607–1622 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Tiwari, A.; Yadav, P.K.; Singh, P.: Stokes flow through assemblage of non-homogeneous porous cylindrical particles using cell model technique. Natl. Acad. Sci. Lett. 41(1), 53–57 (2018)

    MathSciNet  Google Scholar 

  20. Vafai, K.; Thiyagaraja, R.: Analysis of flow and heat transfer at the interface region of a porous medium. Int. J. Heat Mass Transf. 30(7), 1391–1405 (1987)

    MATH  Google Scholar 

  21. Sahraoui, M.; Kaviany, M.: Slip and no-slip velocity boundary conditions interface of porous, plain -media. Int. J. Heat Mass Transf. 35(4), 927–943 (1992)

    MATH  Google Scholar 

  22. Ansari, I.; Deo, S.: Effect of magnetic field on the two immiscible viscous fluids flow in a channel filled with porous medium. Natl. Acad. Sci. Lett. 40(3), 211–214 (2017)

    MathSciNet  Google Scholar 

  23. Umavathi, J.C.; Chamkha, A.J.; Mateen, A.; Al-Mudhaf, A.: Unsteady two-fluid flow and heat transfer in a horizontal channel. Heat Mass Transf. 42(2), 81 (2005)

    MATH  Google Scholar 

  24. Umavathi, J.C.; Mateen, A.; Chamkha, A.J.; Al Mudhaf, A.: Oscillatory hartmann two-fluid flow and heat transfer in a horizontal channel. Int. J. Appl. Mech. Eng. 26(4), 155–178 (2006)

    MATH  Google Scholar 

  25. Umavathi, J.C.; Chamkha, A.J.; Manjula, M.H.; Al-Mudhaf, A.F.: Radiative heat transfer of a two-fluid flow in a vertical porous stratum. Int. J. Fluid Mech. Res. 35(6), 510–543 (2008)

    Google Scholar 

  26. Umavathi, J.C.; Chamkha, A.J.; Abdul, M.; Kumar, J.P.: Unsteady magnetohydroynamic two fluid flow and heat transfer in a horizontal channel. Int. J. Heat Technol. 26, 121–133 (2008)

    Google Scholar 

  27. Umavathi, J.C.; Kumar, J.P.; Chamkha, A.J.: Convective flow of two immiscible viscous and couple stress permeable fluids through a vertical channel. Turk. J. Eng. Environ. Sci. 33(4), 221–244 (2010)

    Google Scholar 

  28. Chamkha, A.J.: Unsteady laminar hydromagnetic fluid–particle flow and heat transfer in channels and circular pipes. Int. J. Heat Fluid Flow 21(6), 740–746 (2000)

    Google Scholar 

  29. Allan, F.M.; Hamdan, M.H.: Fluid mechanics of the interface region between two porous layers. Appl. Math. Comput. 128(1), 37–43 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Ford, R.A.; Hamdan, M.H.: Coupled parallel flow through composite porous layers. Appl. Math. Comput. 97, 261–271 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Yadav, P.K.: Motion through a non-homogeneous porous medium: hydrodynamic permeability of a membrane composed of cylindrical particles. Eur. Phys. J. Plus. 133(1), 1–26 (2018)

    Google Scholar 

  32. Hamdan, M.H.; Kamel, M.T.; Siyyam, H.I.: A permeability function for Brinkman’s equation. In: Mathematical Methods, Computational Techniques and Intelligent Systems. pp. 198–205 (2009)

  33. Awartani, M.M.; Hamdan, M.H.: Fully developed flow through a porous channel bounded by flat plates. Appl. Math. Comput. 169(2), 749–757 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Chandesris, M.; Jamet, D.: Boundary conditions at a planar fluid-porous interface for a Poiseuille flow. Int. J. Heat Mass Transf. 49, 2137–2150 (2006)

    MATH  Google Scholar 

  35. Nield, D.A.; Kuznetsov, A.V.: The effect of a transition layer between a fluid and a porous medium: shear flow in a channel. Transp. Porous Media 78(3), 477–487 (2009)

    Google Scholar 

  36. Umavathi, J.C.; Chamkha, A.J.; Manjula, M.H.; Al-Mudhaf, A.: Flow and heat transfer of a couple-stress fluid sandwiched between viscous fluid layers. Can. J. Phys. 83(7), 705–720 (2005)

    Google Scholar 

  37. Abu Zaytoon, M.S.; Alderson, T.L.; Hamdan, M.H.: Flow through layered media with embedded transition porous layer. Int. J. Enhanc. Res. Sci. Technol. Eng. 5(4), 9–26 (2016)

    Google Scholar 

  38. Abu Zaytoon, M.S.; Alderson, T.L.; Hamdan, M.H.: Flow through a layered porous configuration with generalized variable permeability. Int. J. Enhanc. Res. Sci. Tchnol. Eng. 5(6), 1–22 (2016)

    Google Scholar 

  39. Abu Zaytoon, M.S.; Alderson, T.L.; Hamdan, M.H.: Flow over a Darcy porous layer of variable permeability. J. Appl. Math. Phys. 4(1), 86–99 (2016)

    Google Scholar 

  40. Abu Zaytoon, M.S.; Alderson, T.L.; Hamdan, M.H.: Flow through a variable permeability Brinkman porous core. J. Appl. Math. Phys. 4(4), 766–778 (2016)

    Google Scholar 

  41. Alzahrani, S.M.; Gadoura, I.; Hamdan, M.H.: A note on the flow of a fluid with pressure-dependent viscosity through a porous medium with variable permeability. J. Mod. Technol. Eng. 2(1), 21–33 (2017)

    Google Scholar 

  42. Umavathi, J.C.; Kumar, J.P.; Chamkha, A.J.: Flow and heat transfer of a micropolar fluid sandwiched between viscous fluid layers. Can. J. Phys. 86(8), 961–973 (2008)

    Google Scholar 

  43. Kumar, J.P.; Umavathi, J.C.; Chamkha, A.J.; Pop, I.: Fully-developed free-convective flow of micropolar and viscous fluids in a vertical channel. Appl. Math. Model. 34(5), 1175–1186 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Umavathi, J.C.; Chamkha, A.J.; Shekar, M.: Flow and heat transfer of two micropolar fluids separated by a viscous fluid layer. Int. J. Microsc. Nanosc. Therm. Fluid Transp. Phenom. 5(1), 23 (2014)

    Google Scholar 

  45. Damseh, R.A.; Al-Odat, M.Q.; Chamkha, A.J.; Shannak, B.A.: Combined effect of heat generation or absorption and first-order chemical reaction on micropolar fluid flows over a uniformly stretched permeable surface. Int. J. Therm. Sci. 48(8), 1658–1663 (2009)

    Google Scholar 

  46. Magyari, E.; Chamkha, A.J.: Combined effect of heat generation or absorption and first-order chemical reaction on micropolar fluid flows over a uniformly stretched permeable surface: the full analytical solution. Int. J. Therm. Sci. 49(9), 1821–1828 (2010)

    Google Scholar 

  47. Yadav, P.K.; Jaiswal, S.; Sharma, B.D.: A mathematical model of micropolar fluid in two-phase immiscible fluid flow through porous channel. Appl. Math. Mech. 39(7), 1–17 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Yadav, P.K.; Jaiswal, S.: Influence of an inclined magnetic field on the Poiseuille flow of immiscible micropolar-Newtonian fluids in the porous medium. Can. J. Phys. 96, 1016–1028 (2018)

    Google Scholar 

  49. Yadav, P.K.; Jaiswal, S.; Asim, T.; Mishra, R.: Influence of magnetic field on the flow of micropolar fluid sandwiched between two Newtonian fluid layers through porous medium. Eur. Phys. J. Plus. 133, 247–260 (2018)

    Google Scholar 

  50. Al-Mutairi, S.M.; Abu-Khamsin, S.A.; Hossain, M.E.: A new rigorous mathematical model to describe immisicble CO2-oil flow in porous media. J. Porous Media. 17(5), 421–429 (2014)

    Google Scholar 

  51. Siddique, M.H.; Bellary, S.A.I.; Samad, A.; Kim, J.H.: Experimental and Numerical investigation of the performance of a centrifugal pump when pumping water and light crude oil. Arab. J. Sci. Eng. 42(11), 4605–4615 (2017)

    Google Scholar 

  52. Brinkman, H.C.: A Calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 2, 155–161 (1951)

    Google Scholar 

  53. Darcy, H.: Les fontaines publique de la ville de Dijon. Dalmont, Paris (1856)

    Google Scholar 

  54. Liu, S.; Masliyah, J.H.: Single Fluid Flow in Porous Media. Chem. Eng. Commun. 148(1), 653–732 (1996)

    Google Scholar 

  55. Nield, D.A.; Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    MATH  Google Scholar 

  56. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2, 205–217 (1964)

    MathSciNet  MATH  Google Scholar 

  57. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  58. Lukaszewicz, G.: Micropolar Fluids Theory and Applications. Springer, Berlin (2004)

    MATH  Google Scholar 

  59. Ahmadi, G.: Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int. J. Eng. Sci. 14(7), 639–646 (1976)

    MATH  Google Scholar 

Download references

Acknowledgements

The second author is thankful to SERB, New Delhi, for supporting this research work under the research grant SR/FTP/MS-47/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneha Jaiswal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, S., Yadav, P.K. Flow of Micropolar–Newtonian Fluids through the Composite Porous Layered Channel with Movable Interfaces. Arab J Sci Eng 45, 921–934 (2020). https://doi.org/10.1007/s13369-019-04157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04157-2

Keywords

Navigation