Skip to main content
Log in

A Comparative Study of Mesh-Free Radial Point Interpolation Method and Moving Least Squares Method-Based Error Estimation in Elastic Finite Element Analysis

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The mesh-free interpolation method-based recovery of finite element discretization error is presented in this study. Two interpolation schemes, namely radial point interpolation method and moving least squares method, are taken for the recovery of finite element solution error. The global and elemental errors of finite element solution are evaluated in energy norm. The two-dimensional benchmark elastic problems are analysed using triangular/quadrilateral meshing schemes to prove the proposed mesh-free error estimation techniques validity and the effectiveness. The results of the mesh-less interpolation recovery-based error estimation are also compared with mesh-dependent least squares interpolation method-based error estimation. The mesh-free recovery is based on the fitting of a higher-order polynomial to the field variable over a mesh-less patch (radial support domain) using RPI and MLS interpolation method, while the mesh-dependent recovery is based on recovery of the field variable over a patch of nodes surrounding the particular given node using RPI, MLS and LS interpolation method. The study presents the effect of polynomial basis function (LS), polynomial basis function along with radial basis function (RPI)-based interpolation method and weighted polynomial basis function (MLS) on the recovery of finite element solution error. The quality of error estimation under different interpolation schemes is compared in terms of convergence characteristics, local/global effectivity, error distribution patterns and adaptively refined meshes. It can be concluded that weighting function of least squares interpolation affects considerably the mesh-free error estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Babuska, I.; Banerjee, U.; Kergrene, K.: Strongly stable generalized finite element method: application to interface problems. Comput. Methods Appl. Mech. Eng. 327, 58–92 (2017)

    Article  MathSciNet  Google Scholar 

  2. Dekker, R.; van der Meer, F.P.; Maljaars, J.; Sluys, L.J.: A cohesive XFEM model for simulating fatigue crack growth under mixed-mode loading and overloading. Int. J. Numer. Methods Eng. (2019). https://doi.org/10.1002/nme.6026

    Article  MathSciNet  Google Scholar 

  3. Yagawa, G.: Node by node parallel finite elements: a virtually meshless method. Int. J. Numer. Methods Eng. (2004). https://doi.org/10.1002/nme.955

    Article  MATH  Google Scholar 

  4. Lee, C.-K.; Mihai, L.A.; Hale, J.S.; Kerfriden, P.; Bordas, S.P.A.: Strain smoothing for compressible and nearly-incompressible finite elasticity. Comput. Struct. (2017). https://doi.org/10.1016/j.compstruc.2016.05.004

    Article  Google Scholar 

  5. Chen, G.: A view on manifold method comparing with finite element method. Comput. Mech. (2007). https://doi.org/10.1007/978-3-540-75999-7_188

    Article  Google Scholar 

  6. Sapozhnikov, S.B.; Shchurova, E.I.: Voxel and finite element analysis models for ballistic impact on ceramic-polymer composite panels. Proc. Eng. (2017). https://doi.org/10.1016/j.proeng.2017.10.457

    Article  Google Scholar 

  7. Terada, K.; Ishii, T.; Kyoya, T.; Kishino, Y.: Finite cover method for progressive failure with cohesive zone fracture in heterogeneous solids and structures. Comput. Mech. (2007). https://doi.org/10.1007/s00466-005-0017-6

    Article  MATH  Google Scholar 

  8. Osaki, H.; Matsubara, H.; Yagawa, G.: 3D Crack propagation analysis using free mesh method. Comput. Methods Eng. Sci. (2006). https://doi.org/10.1007/978-3-540-48260-4_47

    Article  Google Scholar 

  9. Ye, T.; Pan, D.; Huang, C.; Liu, M.: Smoothed Particle Hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Phys. Fluids 31, 011301 (2019). https://doi.org/10.1063/1.5068697

    Article  Google Scholar 

  10. Breitkopf, P.; Rassineux, A.; Savignat, J.-M.; Villon, P.: Integration constraint in diffuse element method. Comput. Methods Appl. Mech. Eng. (2004). https://doi.org/10.1016/j.cma.2003.12.014

    Article  MATH  Google Scholar 

  11. Lin, Z.; Liu, F.; Wang, D.; Gu, Y.: Reproducing kernel particle method for two-dimensional time-space fractional diffusion equations in irregular domains. Eng. Anal. Bound. Elem. (2018). https://doi.org/10.1016/j.enganabound.2018.10.002

    Article  MathSciNet  MATH  Google Scholar 

  12. Xiang, H.; Chen, B.: A moving particle semi-implicit method for free surface flow: improvement in inter-particle force stabilization and consistency restoring. Numer. Methods Fluid (2017). https://doi.org/10.1002/fld.4354

    Article  Google Scholar 

  13. Mužík, J.; Sitányiová, D.: Application of the Meshless Local Petrov–Galerkin method for subsoil settlement analysis. Adv. Mater. Res. (2014). https://doi.org/10.4028/www.scientific.net/AMR.969.55

    Article  Google Scholar 

  14. Liu, M.B.; Xie, W.P.; Liu, G.R.: Modelling incompressible flows using a finite particle method. Appl. Math. Modell. (2005). https://doi.org/10.1016/j.apm.2005.05.003

    Article  MATH  Google Scholar 

  15. Chen, J.-S.; Hillman, M.M.; Chi, S.-W.: Mesh free Methods: progress made after 20 Years. J. Eng. Mech. 143(4), 1–38 (2017)

    Article  Google Scholar 

  16. Belytschko, T.; Lu, Y.Y.; Gu, L.: Element-Free Galerkin method. Int. J. Numer. Methods Eng. 37, 229–250 (1994)

    Article  MathSciNet  Google Scholar 

  17. Liu, G.R.; Gu, Y.T.: A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids. J. Sound Vib. 246(1), 29–46 (2001)

    Article  Google Scholar 

  18. Lancaster, P.; Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 87, 141–158 (1981)

    Article  MathSciNet  Google Scholar 

  19. Iqbal, M.; Gimperlein, H.; Mohamed, M.S.; Laghrouche, O.: An a posteriori error estimate for the generalized finite element method for transient heat diffusion problems. Int. J. Numer. Methods Eng. (2017). https://doi.org/10.1002/nme.5440

    Article  MathSciNet  Google Scholar 

  20. Ahmed, M.; Singh, D.; Desmukh, M.N.: Element Free Galerkin post-processing technique based error estimator for elasticity problems. Civ. Eng. J. (2018). https://doi.org/10.28991/cej-03091211

    Article  Google Scholar 

  21. Zienkiewicz, O.C.; Zhu, J.Z.: The Super-convergent patch recovery and a posteriori error estimates, Part I, the error recovery technique. Int. J. Numer. Methods Eng. (1992). https://doi.org/10.1002/nme.1620330702

    Article  MATH  Google Scholar 

  22. Ubertini, F.: Patch recovery based on complementary energy. Int. J. Numer. Methods Eng. (2004). https://doi.org/10.1002/nme.924

    Article  MATH  Google Scholar 

  23. Ahmed, M.; Singh, D.; Islam, S.: Effect of contact conditions on adaptive finite element simulation of sheet forming operations. Eur. J. Comput. Mech. (2015). https://doi.org/10.1080/17797179.2015.1012632

    Article  Google Scholar 

  24. Mohite, P.M.; Upadhyay, C.S.: Adaptive finite element based shape optimization in laminated composite plates. Comput. Struct. (2015). https://doi.org/10.1016/j.compstruc.2015.02.020

    Article  Google Scholar 

  25. Rajendran, S.; Liew, K.M.: Optimal stress sampling points of plane triangular elements for patch recovery of nodal stresses. Int. J. Numer. Methods Eng. (2003). https://doi.org/10.1002/nme.790

    Article  MATH  Google Scholar 

  26. Zhang, R.; Li, L.; Zhao, L.; Tang, G.: An adaptive remeshing procedure for discontinuous finite element limit analysis. Int J. Numer. Methods Eng. (2018). https://doi.org/10.1002/nme.5925

    Article  MathSciNet  Google Scholar 

  27. Duflot, M.; Bordas, S.: A posteriori error estimation for extended finite elements by an extended global recovery. Int. J. Numer. Methods Eng. (2008). https://doi.org/10.1002/nme.2332

    Article  MathSciNet  MATH  Google Scholar 

  28. Calik-Karaköse, Ü.H.; Askes, H.: A recovery-type a posteriori error estimator for gradient elasticity. Comput. Struct. (2015). https://doi.org/10.1016/j.compstruc.2015.04.003

    Article  Google Scholar 

  29. Ahmed, M.; Singh, D.; Desmukh, M.N.: Interpolation type stress recovery technique based error estimator for elasticity problems. Mechanics (2018). https://doi.org/10.5755/j01.mech.24.5.19937

    Article  Google Scholar 

  30. Cao, Y.; Yao, L.; Yin, Y.: New treatment of essential boundary conditions in EFG method by coupling with RPIM. Acta Mech. Solida Sin. (2013). https://doi.org/10.1016/S08949166(13)6002

    Article  Google Scholar 

  31. Mirzaei, D.: Analysis of moving least squares approximation revisited. J. Comput. Appl. Maths. (2015). https://doi.org/10.1016/j.cam.2015.01.007

    Article  MathSciNet  MATH  Google Scholar 

  32. Parret-Fréaud, A.; Rey, V.; Gosselet, P.; Rey, C.: Improved recovery of admissible stress in domain decomposition methods—application to heterogeneous structures and new error bounds for FETI-DP. Int. J. Numer Methods Eng. (2016). https://doi.org/10.1002/nme.5462

    Article  MATH  Google Scholar 

  33. Onate, E.; Perazzo, F.; Miquel, J.: A finite point method for elasticity problems. Comput. Struct. 79, 2151–2163 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Deanship of Scientific Research for providing administrative and financial supports. The author also acknowledge the Dean, College of Engineering, for his valuable support and help

Funding

Funding for this work has been provided by the Deanship of Scientific Research, King Khalid University, Ministry of Education, Kingdom of Saudi Arabia, under research Grant Award Number 172 (1440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M. A Comparative Study of Mesh-Free Radial Point Interpolation Method and Moving Least Squares Method-Based Error Estimation in Elastic Finite Element Analysis. Arab J Sci Eng 45, 3541–3557 (2020). https://doi.org/10.1007/s13369-019-04154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04154-5

Keywords

Navigation