Skip to main content
Log in

Extraction and Characterization of Nanocellulose from Raw Oil Palm Leaves (Elaeis guineensis)

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The high surface area, lightweight and excellent biocompatibility of nanocellulose (NC) have resulted in its wide application as a bio-based reinforcement agent. In this study, raw oil palm fronds leaves (OPFL) were used as the cellulose source to prepare NC. Successive treatments of raw OPFL with bleach, alkali and acid yielded NC in a form of white powder. X-ray diffraction, transmission and field emission scanning electron micrographs showed that the isolated NC formed crystalline needlelike structures with diameters ranging between 10 and 30 nm. The crystallinity index of NC was 45.5%, greater than raw OPFL (25.3%) and cellulose (30.5%). The AFM micrographs showed that the NC exhibited a root-mean-square roughness of 9.146 nm. FTIR-ATR spectra revealed the disappearance of a C=O peak at 1732 cm−1 with the absence of impurities, while the EDX spectrum further affirmed that lignin and hemicellulose were successfully eliminated. BET surface area of NC (5.108 m2/g) was found higher than cellulose (1.4526 m2/g). The TGA data revealed that NC decomposed between 120 and 450 °C, with an 80% mass loss that corresponded to sulfate groups (O–SO3). In short, the nanometer dimensions of NC extracted from raw OPFL implied its promising applications as a reinforcing agent for improving mechanical properties of nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nordin, N.A.; Sulaiman, O.; Hashim, R.; Kassim, M.H.M.: Oil palm frond waste for the production of cellulose nanocrystals. J. Phys. Sci. 28, 115–126 (2017)

    Google Scholar 

  2. Awalludin, M.F.; Sulaiman, O.; Hashim, R.; Wan Nadhari, W.N.A.: An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renew. Sustain. Energy Rev. 50, 1469–1484 (2015)

    Google Scholar 

  3. Chieng, B.W.; Lee, S.H.; Ibrahim, N.A.; Then, Y.Y.; Loo, Y.Y.: Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers 9, 355 (2017)

    Google Scholar 

  4. Owolabi, F.A.; Ghazali, A.; Khalil, A.H.P.S.; Hassan, A.; Arjmandi, R.; Fazita, N.M.R.; Haafiz, M.M.K.: Isolation and characterization of microcrystalline cellulose from oil palm fronds using chemomechanical process. Wood Fiber Sci. 48, 1–11 (2015)

    Google Scholar 

  5. Onoja, E.; Chandren, S.; Razak, F.I.A.; Mahat, N.A.; Wahab, R.A.: Oil palm (Elaeis guineensis) biomass in Malaysia: the present and future prospects. Waste Biomass Valorization 10, 2099−2117 (2019)

    Google Scholar 

  6. Onoja, E.; Chandren, S.; Razak, F.I.A.; Wahab, R.A.: Enzymatic synthesis of butyl butyrate by Candida rugosalipase supported on magnetized-nanosilica from oil palm leaves: process optimization, kinetic and thermodynamic study. J Taiwan Inst. Chem. E 91, 105–118 (2018)

    Google Scholar 

  7. Onoja, E.; Chandren, S.; Razak, F.I.A.; Wahab, R.A.: Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization. J. Biotechnol. 283, 81–96 (2018)

    Google Scholar 

  8. Cherian, B.M.; Leão, A.L.; de Souza, S.F.; Thomas, S.; Pothan, L.A.; Kottaisamy, M.: Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr. Polym. 81, 720–725 (2010)

    Google Scholar 

  9. Dungani, R.; Owolabi, A.F.; Saurabh, C.K.; Khalil, A.H.P.S.; Tahir, P.M.; Hazwan, C.I.C.M.; Ajijolakewu, K.A.; Masri, M.M.; Rosamah, E.; Aditiawati, P.: Preparation and fundamental characterization of cellulose nanocrystal from oil palm fronds biomass. J. Polym. Environ. 25, 692–700 (2017)

    Google Scholar 

  10. Elias, N.; Chandren, S.; Razak, F.I.A.; Jamalis, J.; Widodo, N.; Wahab, R.A.: Characterization, optimization and stability studies on Candida rugosa lipase supported on nanocellulose reinforced chitosan prepared from oil palm biomass. Int. J. Biol. Macromol. 114, 306–316 (2018)

    Google Scholar 

  11. Neto, W.P.F.; Silvério, H.A.; Dantas, N.O.; Pasquini, D.: Extraction and characterization of cellulose nanocrystals from agro-industrial residue–Soy hulls. Ind. Crop Prod. 42, 480–488 (2013)

    Google Scholar 

  12. Elias, N.; Chandren, S.; Attan, N.; Mahat, N.A.; Razak, F.I.A.; Jamalis, J.; Wahab, R.A.: Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate. Carbohydr. Polym. 176, 281–292 (2017)

    Google Scholar 

  13. Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, Y.; Abraham, E.; Ben-Shalom, T.; Lapidot, S.; Shoseyov, O.: Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 39, 76–88 (2016)

    Google Scholar 

  14. Khan, A.; Khan, R.A.; Salmieri, S.; Le Tien, C.; Riedl, B.; Bouchard, J.; Chauve, G.; Tan, V.; Kamal, M.R.; Lacroix, M.: Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr. Polym. 90, 1601–1608 (2012)

    Google Scholar 

  15. Maiti, S.; Jayaramudu, J.; Das, K.; Reddy, S.M.; Sadiku, R.S.S.; Liu, D.: Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr. Polym. 98, 562–567 (2013)

    Google Scholar 

  16. Sampath, U.T.M.; Ching, Y.C.; Chuah, C.H.; Singh, R.; Lin, P.C.: Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose 24, 2215–2228 (2017)

    Google Scholar 

  17. Khoo, R.Z.; Ismail, H.; Chow, W.S.: Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites. Procedia Chem. 19, 788–794 (2016)

    Google Scholar 

  18. Li, W.; Wu, Q.; Zhao, X.; Huang, Z.; Cao, J.; Li, J.; Liu, S.: Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils. Carbohydr. Polym. 113, 403–410 (2014)

    Google Scholar 

  19. Abraham, E.; Elbi, P.; Deepa, B.; Jyotishkumar, P.; Pothen, L.; Narine, S.; Thomas, S.: X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose. Polym. Degrad. Stab. 9, 2378–2387 (2012)

    Google Scholar 

  20. Phanthong, P.; Yufei, M.A.; Guan, G.; Abudula, A.: Extraction of nanocellulose from raw apple stem. J. Jpn. Inst. Energy 94, 787–793 (2015)

    Google Scholar 

  21. Navarro-Pardo, F.; Martínez-Barrera, G.; Martínez-Hernández, A.; Castaño, V.; Rivera-Armenta, J.; Medellín-Rodríguez, F.; Velasco-Santos, C.: Effects on the thermo-mechanical and crystallinity properties of nylon 6,6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon. Materials 6, 3494–3513 (2013)

    Google Scholar 

  22. Segal, L.G.J.M.A.; Creely, J.J.; Martin, A.E.; Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text. Res. J. 10, 786–794 (1959)

    Google Scholar 

  23. Rubentheren, V.; Thomas, A.W.; Chee, C.Y.; Tang, C.K.: Processing and analysis of chitosan nanocomposite reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr. Polym. 115, 379–387 (2015)

    Google Scholar 

  24. Ching, Y.C.; Ng, T.S.: Effect of preparation conditions on cellulose from oil palm empty fruit bunch fiber. BioResour 9, 6373–6385 (2014)

    Google Scholar 

  25. Malhotra, R.; Prakash, D.; Shukla, S.K.; Kim, T.; Kumar, S.; Rao, N.J.: Comparative study of toxic chlorophenolic compounds generated in various bleaching sequences of wheat straw pulp. Clean Technol Environ. 15, 999–1011 (2013)

    Google Scholar 

  26. Xu, J.; Cheng, J.J.; Sharma-Shivappa, R.R.; Burns, J.C.: Lime pretreatment of switchgrass at mild temperatures for ethanol production. Bioresour. Technol. 101, 2900–2903 (2010)

    Google Scholar 

  27. Lee, H.; Hamid, S.; Zain, S.: Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci. World J. 2014, 631013 (2014)

    Google Scholar 

  28. Mohaiyiddin, M.S.; Lin, O.H.; Owi, W.T.; Chan, C.H.; Chia, C.H.; Zakaria, S.; Villagracia, A.R.; Akil, H.M.: Characterization of nanocellulose recovery from Elaeis guineensis frond for sustainable development. Clean Technol Environ. 18, 2503–2512 (2016)

    Google Scholar 

  29. Dufresne, A.: Nanocellulose: a new ageless bionanomaterial. Mater. Today 16, 220–227 (2013)

    Google Scholar 

  30. Zhang, J.; Li, B.; Wang, Q.; Wei, X.; Feng, W.; Chen, Y.; Huang, P.; Wang, X.: Application of Fourier transform infrared spectroscopy with chemometrics on postmortem interval estimation based on pericardial fluids. Sci. Rep. 7, 18013 (2017)

    Google Scholar 

  31. Sun, R.C.; Tomkinson, J.; Wang, Y.X.; Xiao, B.: Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction. Polymer 41, 2647–2656 (2000)

    Google Scholar 

  32. Sain, M.; Panthapulakkal, S.: Bioprocess preparation of wheat straw fibers and their characterization. Ind. Crop Prod. 23, 1–8 (2006)

    Google Scholar 

  33. Lani, N.S.; Ngadi, N.; Johari, A.; Jusoh, M.: Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites. J. Nanomater. 2014, 702538 (2014)

    Google Scholar 

  34. Alemdar, A.; Sain, M.: Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour. Technol. 99, 1664–1671 (2008)

    Google Scholar 

  35. Deepa, B.; Abraham, E.; Cordeiro, N.; Mozetic, M.; Mathew, A.P.; Oksman, K.; Faria, M.; Thomas, S.; Pothan, L.A.: Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22, 1075–1090 (2015)

    Google Scholar 

  36. Troedec, M.; Sedan, D.; Peyratout, C.; Bonnet, J.P.; Smith, A.; Guinebretiere, R.; Gloaguen, V.; Krausz, P.: Influence of various chemical treatments on the composition and structure of hemp fibres. Compos. PartA Appl. Sci. Manuf. 39, 514–522 (2008)

    Google Scholar 

  37. Moriana, R.; Vilaplana, F.; Ek, M.: Cellulose nanocrystals from forest residues as reinforcing agents for composites: a study from macro-to nano-dimensions. Carbohyd. Polym. 139, 139–149 (2016)

    Google Scholar 

  38. Lamaming, J.; Hashim, R.; Leh, C.P.; Sulaiman, O.; Sugimoto, T.; Nasir, M.: Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis). Carbohydr. Polym. 134, 534–540 (2015)

    Google Scholar 

  39. Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K.: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 10 (2010)

    Google Scholar 

  40. Wulandari, W.T.; Rochliadi, A.; Arcana, I.M.: Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. Mater. Sci. Eng. 107, 012045 (2016)

    Google Scholar 

  41. Chunilall, V.; Bush, T.; Larsson, P.T.: Supra-molecular structure and chemical reactivity of cellulose I studied using CP/MAS (sup) 13 C-NMR. Intech Publishing, London (2013)

    Google Scholar 

  42. Vanhatalo, K.M.; Maximova, N.; Perander, A.M.; Johansson, L.S.; Haimi, E.; Dahl, O.: Comparison of conventional and lignin-rich microcrystalline cellulose. BioResour 11, 4037–4054 (2016)

    Google Scholar 

  43. Guo, J.; Catchmark, J.M.: Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohyd. Polym. 87, 1026–1037 (2012)

    Google Scholar 

  44. Abu-Danso, E.; Srivastava, V.; Sillanpää, M.; Bhatnagar, A.: Pretreatment assisted synthesis and characterization of cellulose nanocrystals and cellulose nanofibers from absorbent cotton. Intl. J. Bio. Macromol. 102, 248–257 (2017)

    Google Scholar 

  45. Brinkmann, A.; Chen, M.; Couillard, M.; Jakubek, Z.J.; Leng, T.; Johnston, L.J.: Correlating cellulose nanocrystal particle size and surface area. Langmuir 32, 6105–6114 (2016)

    Google Scholar 

  46. Hussin, M.H.; Tajudin, N.A.; Azani, N.F.S.M.; Paramasivam, M.; Haafiz, M.K.; Kumar, S.; Yemloul, M.: Physicochemical studies of kenaf nanocrystalline cellulose and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) as filler for lithium perchlorate based polymer electrolyte. Int. J. Electrochem. Sci. 14, 1620–1633 (2019)

    Google Scholar 

  47. Jiang, F.; Hsieh, Y.L.: Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr. Polym. 122, 60–68 (2015)

    Google Scholar 

  48. Wu, X.; Shi, Z.; Fu, S.; Chen, J.; Berry, R.M.; Tam, K.C.: Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts. ACS Sustain. Chem. Eng. 11, 5929–5935 (2016)

    Google Scholar 

  49. Lu, P.; Hsieh, Y.L.: Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr. Polym. 87, 564–573 (2012)

    Google Scholar 

  50. Khoshkava, V.; Kamal, M.R.: Effect of drying conditions on cellulose nanocrystal (CNC) agglomerate porosity and dispersibility in polymer nanocomposites. Powder Technol. 261, 288–298 (2014)

    Google Scholar 

  51. Chandra, J.; George, N.; Narayanankutty, S.: K: isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr. Polym. 142, 158–166 (2016)

    Google Scholar 

  52. Zhou, Y.M.; Fu, S.Y.; Zheng, L.M.; Zhan, H.Y.: Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polym. Lett. 6, 794−804 (2012)

    Google Scholar 

  53. Liu, H.; Liu, D.; Yao, F.; Wu, Q.: Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour. Technol. 101, 5685–5692 (2010)

    Google Scholar 

  54. Lahiji, R.R.; Xu, X.; Reifenberger, R.; Raman, A.; Rudie, A.; Moon, R.J.: Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26, 4480–4488 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Grant Scheme (FRGS RJ130000.7826.4F871) from the Universiti Teknologi Malaysia, Johor. We would also like to acknowledge the valuable help and suggestions provided by our colleagues.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nursyafreena Attan or Roswanira Abdul Wahab.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussin, F.N.N.M., Attan, N. & Wahab, R.A. Extraction and Characterization of Nanocellulose from Raw Oil Palm Leaves (Elaeis guineensis). Arab J Sci Eng 45, 175–186 (2020). https://doi.org/10.1007/s13369-019-04131-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04131-y

Keywords

Navigation