Skip to main content
Log in

Fault-Tolerant Control Based on Sliding Mode Controller for Double-Star Induction Machine

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a fault-tolerant control (FTC) strategy for double-star induction machine subject to stator and rotor faults. To steer the speed and the flux to their desired references, a nonlinear sliding mode controller (SMC) is designed. However, the proposed SMC can’t deal with the faults effect which can achieve graceful system degradation. In order to compensate the faults effect, an appropriate combination between the proposed SMC and a new developed fault detection and compensation block is made. Simulation results are presented to show the effectiveness of the proposed FTC in terms of speed and flux responses using an estimator of rotor flux. Compared with SMC, the obtained results confirm the validity of the proposed FTC strategy and its ability to ensure a ripple-free operation when the fault occurs. In this kind of multiphase machines, the proposed controller is applied for the first time; its efficiency, robustness and simple design are promising for practical implementation and can be an alternative to the existing FTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tir, Z.; Soufi, Y.; Hashemnia, M.N.; Malik, O.P.; Marouani, K.: Fuzzy logic field oriented control of double star induction motor drive. Electr. Eng. 99(2), 495–503 (2017)

    Article  Google Scholar 

  2. Rahali, H.; Zeghlache, S.; Benalia, L.: Adaptive field-oriented control using supervisory type-2 fuzzy control for dual star induction machine. Int. J. Intell. Eng. Syst. 10(4), 28–40 (2017)

    Google Scholar 

  3. Duran, M.J.; Prieto, I.J.; Bermudez, M.; Barrero, F.; Guzman, H.; Arahal, M.R.: Optimal fault-tolerant control of six-phase induction motor drives with parallel converters. IEEE Trans. Ind. Electron. 63(1), 629–640 (2016)

    Article  Google Scholar 

  4. González-Prieto, I.; Duran, M.J.; Barrero, F.J.: Fault-tolerant control of six-phase induction motor drives with variable current injection. IEEE Trans. Power Electron. 32(10), 7894–7903 (2017)

    Article  Google Scholar 

  5. Mahmoud, E.A.; Abdel-Khalik, A.S.; Soliman, H.F.: An improved fault tolerant for a five-phase induction machine under open gate transistor faults. Alex. Eng. J. 55(3), 2609–2620 (2016)

    Article  Google Scholar 

  6. Kong, W.; Huang, J.; Kang, M.; Li, B.; Zhao, L.: Fault-tolerant control of five-phase induction motor under single-phase open. J. Electr. Eng. Technol. 9(3), 899–907 (2014)

    Article  Google Scholar 

  7. Bermudez, M.; Gonzalez-Prieto, I.; Barrero, F.; Guzman, H.; Duran, M.J.; Kestelyn, X.: Open-phase fault-tolerant direct torque control technique for five-phase induction motor drives. IEEE Trans. Ind. Electron. 64(2), 902–911 (2017)

    Article  Google Scholar 

  8. Zina, H.B.; Allouche, M.; Souissi, M.; Chaabane, M.; Chrifi-Alaoui, L.: Robust sensor fault-tolerant control of induction motor driver. Int. J. Fuzzy Syst. 19(1), 155–166 (2017)

    Article  MathSciNet  Google Scholar 

  9. Yazdani, S.; Haeri, M.: Robust adaptive fault-tolerant control for leader–follower flocking of uncertain multi-agent systems with actuator failure. ISA Trans. 71(Pt 2), 227–234 (2017)

    Article  Google Scholar 

  10. Zhang, Y.; Tang, S.; Guo, J.: Adaptive-gain fast super-twisting sliding mode fault tolerant control for a reusable launch vehicle in reentry phase. ISA Trans. 71(Pt 2), 380–390 (2017)

    Article  Google Scholar 

  11. Zeghlache, S.; Benslimane, T.; Bouguerra, A.: Active fault tolerant control based on interval type-2 fuzzy sliding mode controller and non linear adaptive observer for 3-DOF laboratory helicopter. ISA Trans. 71(Pt 2), 280–303 (2017)

    Article  Google Scholar 

  12. Ao, W.; Song, Y.; Wen, C.: Adaptive robust fault tolerant control design for a class of nonlinear uncertain MIMO systems with quantization. ISA Trans. 68, 63–72 (2017)

    Article  Google Scholar 

  13. Xie, C.H.; Yang, G.H.: Data-based fault-tolerant control for affine nonlinear systems with actuator faults. ISA Trans. 64, 285–292 (2016)

    Article  Google Scholar 

  14. Amimeur, H.; Abdessemed, R.; Aouzellag, D.; Merabet, E.; Hamoudi, F.: A sliding mode control associated to the field-oriented control of dual-stator induction motor drives. J. Electr. Eng. 10(3), 7–12 (2010)

    Google Scholar 

  15. Listwan, J.; Pieńkowski, K.: Sliding-mode direct field-oriented control of six-phase induction motor. Tech. Trans. 2-M, 95–108 (2016)

    Google Scholar 

  16. Dandan, S.; Yugang, D.; Chengning, Z.: Sliding mode controller for permanent magnetic synchronous motors. Energy Procedia 105, 2641–2646 (2017)

    Article  Google Scholar 

  17. Mirzaeva, G.; Saad, K.I.; Jahromi, M.G.: Comprehensive diagnostics of induction motor faults based on measurement of space and time dependencies of air gap flux. IEEE Trans. Ind. Appl. 53(3), 2657–2666 (2017)

    Article  Google Scholar 

  18. Kaikaa, M.Y.; Hadjami, M.; Khezzar, A.: Effects of the simultaneous presence of static eccentricity and broken rotor bars on the stator current of induction machine. IEEE Trans. Ind. Electron. 61(5), 2452–2463 (2014)

    Article  Google Scholar 

  19. Elbouchikhi, E.; Choqueuse, V.; Benbouzid, M.: Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation. ISA Trans. 63, 413–424 (2016)

    Article  Google Scholar 

  20. Liu, Y.; Bazzi, A.M.: A review and comparison of fault detection and diagnosis methods for squirrel-cage induction motors: state of the art. ISA Trans. 70, 400–409 (2017)

    Article  Google Scholar 

  21. Hou, Z.; Huang, J.; Liu, H.; Ye, M.; Liu, Z.; Yang, J.: Diagnosis of broken rotor bar fault in open-and closed-loop controlled wye-connected induction motors using zero-sequence voltage. IET Electr. Power Appl. 11(7), 1214–1223 (2017)

    Article  Google Scholar 

  22. Bessam, B.; Menacer, A.; Boumehraz, M.; Cherif, H.: Detection of broken rotor bar faults in induction motor at low load using neural network. ISA Trans. 64, 241–246 (2016)

    Article  Google Scholar 

  23. Lizarraga-Morales, R.A.; Rodriguez-Donate, C.; Cabal-Yepez, E.; Lopez-Ramirez, M.; Ledesma-Carrillo, L.M.; Ferrucho-Alvarez, E.R.: Novel FPGA-based methodology for early broken rotor bar detection and classification through homogeneity estimation. IEEE Trans. Instrum. Meas. 66(7), 1760–1769 (2017)

    Article  Google Scholar 

  24. Hou, Z.; Huang, J.; Liu, H.; Wang, T.; Zhao, L.: Quantitative broken rotor bar fault detection for closed-loop controlled induction motors. IET Electr. Power Appl. 10(5), 403–410 (2016)

    Article  Google Scholar 

  25. Houari, A.; Bouabdallah, A.; Djerioui, A.; Machmoum, M.; Auger, F.; Darkawi, A.; Olivier, J.C.; Benkhoris, M.F.: An effective compensation technique for speed smoothness at low-speed operation of PMSM drives. IEEE Trans. Ind. Appl. 54(1), 647–655 (2018)

    Article  Google Scholar 

  26. Mekki, H.; Benzineb, O.; Boukhetala, D.; Tadjine, M.; Benbouzid, M.: Sliding mode based fault detection, reconstruction and fault tolerant control scheme for motor systems. ISA Trans. 57, 340–351 (2015)

    Article  Google Scholar 

  27. Roubache, T.; Chaouch, S.; Naït-Saïd, M.S.: Backstepping design for fault detection and FTC of an induction motor drives-based EVs. J. Control Meas. Electron. Comput. Commun. 57(3), 736–748 (2016)

    Google Scholar 

  28. Zhang, M.; Liu, X.; Wang, F.: Backstepping based adaptive region tracking fault tolerant control for autonomous underwater vehicles. J. Navig. 70(1), 184–204 (2017)

    Article  Google Scholar 

  29. Djeghali, N.; Ghanes, M.; Djennoune, S.; Barbot, J.P.: Sensorless fault tolerant control for induction motors. Int. J. Control Autom. Syst. 11(3), 563–576 (2013)

    Article  Google Scholar 

  30. Meroufel, A.; Massoum, S.; Bentaallah, A.; Wira, P.; Belaimeche, F.Z.; Masssoum, A.: Double star induction motor direct torque control with fuzzy sliding mode speed controller. Rev. Roum. Sci. Techn. Électrotechn. et Énerg. 62(1), 31–35 (2017)

    Google Scholar 

  31. Elbouchikhi, E.; Choqueuse, V.; Auger, F.; Benbouzid, M.E.H.: Motor current signal analysis based on a matched subspace detector. IEEE Trans. Instrum. Meas. 66(12), 3260–3270 (2017)

    Article  Google Scholar 

  32. Hamouda, N.; Hemsas, K.E.; Benalla, H.: Etude comparative des techniques de filtrage actif sélectif par référentiel synchrone de Park dq et approche FMV. Mediterr. J. Model. Simul. 1(1), 089–098 (2014)

    Google Scholar 

  33. Han, P.; Cheng, M.; Chen, Z.: Dual-electrical-port control of cascaded doubly-fed induction machine for EV/HEV applications. IEEE Trans. Ind. Appl. 53(2), 1390–1398 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Zeghlache.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Layadi, N., Djerioui, A., Zeghlache, S. et al. Fault-Tolerant Control Based on Sliding Mode Controller for Double-Star Induction Machine. Arab J Sci Eng 45, 1615–1627 (2020). https://doi.org/10.1007/s13369-019-04120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s13369-019-04120-1

Keywords