Skip to main content

Advertisement

Log in

Taguchi Optimization Method for Nickel Removal from Aqueous Solutions Using Non-living Pleurotus mutilus

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The main factors conditioning nickel biosorption by non-living fungal biomass of Pleurotus mutilus were studied by the means of two experimental approaches. The surface of fungal biomass was characterized by pHZPC determination, Boehm titration and FTIR spectroscopy. The results demonstrated that the pHZPC is found to be at pH = 7.94, and the number of acidic sites (4.33 meq g−1) is higher than the number of basic sites (0.58 meq g−1). Without the chemical precipitation of Ni(OH)2, the one variable at time (OVAT) approach illustrates at its equilibrium time equal to 79 min, that the maximum nickel biosorption was achieved at pH 8 and optimal concentration of 488 mg L−1. However, the particle size does not affect nickel biosorption. The comparison of the optimal conditions obtained from OVAT and Taguchi methods shows comparable values of pH and equilibrium time, while differences in Ni(II) concentration and particle size were observed. Furthermore, the combination of the four factors at their optimum level improves the biosorption capacity compared to OVAT method (enhancement of 36.23%). The Taguchi method revealed that the contribution of the controlled factors on Ni(II) biosorption followed the following order: Ni(II) (76.98%) > pH (18.16%) > time (3.20%) > particle size (1.66%). The combination of the variation factors could enhance the biosorption capacities of Pleurotus mutilus biomass for use in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Basheer, A.A.: New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018)

    Google Scholar 

  2. Alharbi, O.M.L.; Basheer, A.A.; Khattab, R.A.; Ali, I.: Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 263, 442–453 (2018)

    Google Scholar 

  3. Basheer, A.A.: Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century. Chirality 30(4), 402–406 (2018)

    Google Scholar 

  4. Basheer, A.A.; Ali, I.: Stereoselective uptake and degradation of (±)-o, p-DDD pesticide stereomers in water-sediment system. Chirality 30, 1088–1095 (2018)

    Google Scholar 

  5. Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112(10), 5073–5091 (2012)

    Google Scholar 

  6. Ali, I.; Basheer, A.A.; Mbianda, X.Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V.: Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160–180 (2019)

    Google Scholar 

  7. Ali, I.; Arsh, A.; Kucherova, A.; Memetov, N.; Pasko, T.; Ovchinnikov, K.; Vladimir, P.; Denis, K.; Evgeny, G.; Vladimir, G.; Alexey, T.: Advances in carbon nanomaterials as lubricants modifiers. J. Mol. Liq. 279, 251–266 (2019). https://doi.org/10.1016/j.molliq.2019.01.113

    Article  Google Scholar 

  8. Gupta, V.K.; Ali, I.: Adsorbents for water treatment: low-cost alternatives to carbon. In: Hubbard, A. (ed.) Encyclopedia of Surface and Colloid Science, vol. 1, pp. 136–166. Marcel Dekker, New York (2002)

    Google Scholar 

  9. Verma, A.; Kumar, S.; Kumar, S.: Biosorption of lead ions from the aqueous solution By Sargassum filipendula: equilibrium and kinetic studies. J. Environ. Chem. Eng. 4, 4587–4599 (2016)

    Google Scholar 

  10. Zafar, M.N.; Aslam, I.; Nadeem, R.; Munir, S.; Rana, U.A.; Khan, S.U.D.: Characterization of chemically modified biosorbents from rice bran for biosorption of Ni(II). J. Taiwan Inst. Chem. Eng. 46, 82–88 (2015)

    Google Scholar 

  11. Das, K.K.; Reddy, R.C.; Bagoji, I.B.; Das, S.; Bagali, S.; Mullur, L.; Khodnapur, J.P.; Biradar, M.S.: Primary concept of nickel toxicity—an overview. J. Basic Clin. Physiol. Pharmacol. (2018). https://doi.org/10.1515/jbcpp-2017-0171

    Article  Google Scholar 

  12. Çelekli, A.; Bozkurt, H.: Biosorption of cadmium and nickel ions using Spirulina platensis: kinetic and equilibrium studies. Desalination 275, 141–147 (2011)

    Google Scholar 

  13. Lam, Y.F.; Lee, L.Y.; Chua, S.J.; Shee, S.; Gan, S.: Insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly Lansium domesticum peel biosorbant. Ecotoxicol. Environ. Saf. 127, 61–70 (2016)

    Google Scholar 

  14. Sudha, R.; Srinivasan, K.; Premkumar, P.: Removal of nickel (II) from aqueous solution using Citrus limettioides peel and seed carbon. Ecotoxicol. Environ. Saf. 117, 115–123 (2015)

    Google Scholar 

  15. Kyzas, G.Z.; Terzopoulou, Z.; Nikolaidis, V.; Alexopoulou, E.; Bikiaris, D.N.: Low-cost hemp biomaterials for nickel ions removal from aqueous solutions. J. Mol. Liq. 209, 209–218 (2015)

    Google Scholar 

  16. Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112, 5073–5091 (2012). https://doi.org/10.1021/cr300133d

    Article  Google Scholar 

  17. Meng, F.G.; Chae, S.R.; Shin, H.S.; Yang, F.L.; Zhou, Z.B.: Recent advances in membrane bioreactors: configuration development, pollutant elimination, and sludge reduction. Environ. Eng. Sci. 29, 139–160 (2012)

    Google Scholar 

  18. Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Gupta, V.K.: Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol. Environ. Saf. 148, 702–712 (2018)

    Google Scholar 

  19. Paganelli, F.; Trifoni, M.; Beolchini, F.; Esposito, A.; Toro, L.; Vegli, F.: Equilibrium biosorption studies in single and multi-metal systems. Process Biochem. 37, 115–124 (2001)

    Google Scholar 

  20. Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Badjah, A.Y.; Alwarthan, A.; Basheer, A.A.: Artificial neural network modelling of amido black dye sorption on iron composite nano material: kinetics and thermodynamics studies. J. Mol. Liq. 250, 1–8 (2018)

    Google Scholar 

  21. Ali, I.; Alothman, Z.A.; Alwarthan, A.: Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: kinetic, thermodynamics and mechanism of adsorption. J. Mol. Liq. 2017(236), 205–213 (2017)

    Google Scholar 

  22. Ali, I.; AL-Othman, Z.A.; Alharbi, O.M.L.: Uptake of pantoprazole drug residue from water using novel synthesized composite iron nano adsorbent. J. Mol. Liq. 218, 465–472 (2016)

    Google Scholar 

  23. Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.: Removal of secbumeton herbicide from water on composite nanoadsorbent. Desal. Water Treat. 57(22), 10409–10421 (2016)

    Google Scholar 

  24. Burakova, E.A.; Dyachkova, T.P.; Rukhov, A.V.; Tugolukov, E.N.; Galunin, E.V.; Tkachev, A.G.; Basheer, A.A.; Ali, I.: Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J. Mol. Liq. 253, 340–346 (2018)

    Google Scholar 

  25. Ali, I.; Alothman, Z.A.; Sanagi, M.M.: Green synthesis of iron nano impregnated adsorbent for fast removal of fluoride from water. J. Mol. Liq. 211, 457–465 (2015)

    Google Scholar 

  26. Ali, I.; Khan, T.A.; Asim, M.: Removal of arsenic from water by electro-coagulation and electro-dialysis techniques. Sep. Purif. Rev. 40, 25–42 (2011)

    Google Scholar 

  27. Ali, I.; AL-Othman, Z.A.; Alwarthan, A.: Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J. Mol. Liq. 221, 1168–1174 (2016)

    Google Scholar 

  28. Ali, I.; Al-Othman, Z.A.; Alwarthan, A.: Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: kinetic, thermodynamics and mechanism of adsorption. J. Mol. Liq. 236, 205–213 (2017)

    Google Scholar 

  29. Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.: Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. Int. J. Environ. Sci. Technol. 13, 733–742 (2016)

    Google Scholar 

  30. Ali, I.; Jain, C.K.: Advances in arsenic speciation techniques. Int. J. Environ. Anal. Chem. 84(12), 947–964 (2004). https://doi.org/10.1080/03067310410001729637

    Article  Google Scholar 

  31. Ali, I.; Aboul-Enein, H.Y.: Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography. Chemosphere 48, 275–278 (2002)

    Google Scholar 

  32. Volesky, B.: Biosorption and me. Water Res. 41, 4017–4029 (2007)

    Google Scholar 

  33. Vijayaraghavan, K.; Yun, Y.S.: Bacterial biosorbents and biosorption. Biotechnol. Adv. 26, 266–291 (2008)

    Google Scholar 

  34. Ali, I.; Alharbi, O.M.L.; Al-Othman, Z.A.; Al-Mohaimeed, A.M.; Alwarthan, A.: Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water. Environ. Res. 170, 389–397 (2019)

    Google Scholar 

  35. Al-Othman, Z.A.; Badjah, A.Y.; Ali, I.: Facile synthesis and characterization of multi walled carbon nanotubes for fast and effective removal of 4 tert octylphenol endocrine disruptor in water. J. Mol. Liq. 275, 41–48 (2019)

    Google Scholar 

  36. Kratochvil, D.; Volesky, B.: Advances in the biosorption of heavy metals. Trends Biotechnol. 16, 291–300 (1998)

    Google Scholar 

  37. Rashidi, N.H.; Ibrahim, W.A.; Ali, I.; Sanagi, M.M.: Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples. Environ. Sci. Pollut. Res. 23, 9759–9773 (2016)

    Google Scholar 

  38. Ali, I.: Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: batch and column operations. J. Mol. Liq. 271, 677–685 (2018)

    Google Scholar 

  39. Ali, I.; Alharbi, O.M.L.; Tkachev, A.; Galunin, E.: Water treatment by new generation graphene materials: hope for bright future. Environ. Sci. Pollut. Res. 25, 7315–7329 (2018)

    Google Scholar 

  40. Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Alwarthan, A.: Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal inwater. Colloids Surf. B Bioint. 171, 606–613 (2018)

    Google Scholar 

  41. Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Badjah, A.Y.: Kinetics, thermodynamics and modelling of amido black dye photo-degradation in water using Co/TiO2 nanoparticles. Photochem. Photobiol. 94, 935–941 (2018)

    Google Scholar 

  42. Alothman, Z.A.; Badjah, A.Y.; Ali, I.: Facile synthesis and characterization of multi walled carbon nanotubes for fast and effective removal of 4 tert octylphenol endocrine disruptor in water. J. Mol. Liq. 275, 41–48 (2018)

    Google Scholar 

  43. Ali, I.; Alothman, Z.A.; Alwarthan, A.: Removal of secbumeton herbicide from water on composite nano adsorbent. Desalin. Water Treat. 57, 10409–10421 (2016)

    Google Scholar 

  44. Akbar, A.; Ali, I.; Anal, A.K.: Industrial perspectives of lactic acid bacteria for biopreservation and food safety. J. Anim. Plant Sci. 26, 938–948 (2016)

    Google Scholar 

  45. Sethurajan, M.; van Hullebusch, E.D.; Nancharaiah, Y.V.: Biotechnology in the management and resource recovery from metal bearing solid wastes: recent advances. J. Environ. Manag. 211, 138–153 (2018)

    Google Scholar 

  46. Aksu, Z.; Dönmez, G.: Combined effects of sucrose and copper (II) ions on the growth and copper (II) bioaccumulation properties of Candida sp. J. Chem. Technol. Biotechnol. 75, 847–853 (2000)

    Google Scholar 

  47. Silvera, S.A.N.; Rohan, T.E.: Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes Control 18, 7–27 (2007)

    Google Scholar 

  48. Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M.: Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J. Environ. Chem. Eng. 5, 2782–2799 (2017)

    Google Scholar 

  49. Almendros, A.I.; Calero, M.; Ronda, A.; Martín-Lara, M.A.; Blázquez, G.: Influence of nickel during the thermal degradation of pine cone shell. Study of the environmental implications. J. Cleaner Prod. 183, 403–414 (2018)

    Google Scholar 

  50. Rodríguez, C.E.; Quesada, A.; Rodríguez, E.: Nickel biosorption by acinetobacter baumannii and pseudomonas aeruginosa isolated from industrial wastewater. Braz. J. Microbiol. 37, 465–467 (2006)

    Google Scholar 

  51. Gupta, V.K.; Rastogi, A.; Nayak, A.: Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J. Colloid Interface Sci. 342, 533–539 (2010)

    Google Scholar 

  52. Xu, H.; Liu, Y.: Mechanisms of Cd2+, Cu2+ and Ni2+ biosorption by aerobic granules. Sep. Purif. Technol. 58, 400–411 (2008)

    Google Scholar 

  53. Dina, M.I.; Mirza, M.L.: Biosorption potentials of a novel green biosorbent Saccharum bengalense containing cellulose as carbohydrate polymer for removal of Ni(II) ions from aqueous solutions. Int. J. Biol. Macromol. 54, 99–108 (2013)

    Google Scholar 

  54. Holan, Z.R.; Volsky, B.: Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents. Appl. Biochem. Biotechnol. 53, 133–146 (1995)

    Google Scholar 

  55. Kapoor, A.; Viraraghavan, T.; Cullimore, D.R.: Removal of heavy metals using the fungus Aspergillus niger. Bioresour. Technol. 70, 95–104 (1999)

    Google Scholar 

  56. Jianyou, L.; Xiaoning, G.; Minhua, S.; Haipeng, L.; Diyun, C.; Shuyi, Z.: Performance and mechanism of biosorption of nickel(II) from aqueous solution by non-living Streptomyces roseorubens SY. Colloids Surf. A 548, 125–133 (2018)

    Google Scholar 

  57. Tay, C.C.; Liew, H.H.; Redzwan, G.; Yong, S.K.; Surif, S.; Abdul-Talib, S.: Pleurotus ostreatus spent mushroom compost as green biosorbent for nickel (II) biosorption. Water Sci. Technol. 64, 2425–2432 (2011)

    Google Scholar 

  58. Wong, H.C.; Liu, S.H.; Wang, T.K.; Lee, C.L.; Chiou, C.S.; Liu, D.P.: Characteristics of Vibrio parahaemolyticus O3: K6 from Asia. Appl. Environ. Microbiol. 66, 3981–3986 (2000)

    Google Scholar 

  59. Khitous, M.; Moussous, S.; Selatnia, A.; Kherat, M.: Biosorption of Cd(II) by Pleurotus mutilus biomass in fixed-bed column: experimental and breakthrough curves analysis. Desalin. Water Treat. (2015). https://doi.org/10.1080/19443994.2015.1081625

    Article  Google Scholar 

  60. Chergui, A.; Kerbachi, R.; Junter, G.A.: Biosorption of hexacyanoferrate(III) complex anion to dead biomass of the basidiomycete Pleurotus mutilus: biosorbent characterization and batch experiments. Chem. Eng. J. 147, 150–160 (2009)

    Google Scholar 

  61. Ramrakhiani, L.; Majumder, R.; Khowala, S.: Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomyces clypeatus: surface characterization and mechanism of biosorption. Chem. Eng. J. 171, 1060–1068 (2011)

    Google Scholar 

  62. Torab-Mostaedi, M.; Asadollahzadeh, M.; Hemmati, A.; Khosravi, A.: Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J. Taiwan Inst. Chem. Eng. 44, 295–302 (2013)

    Google Scholar 

  63. Moussous, S.; Selatnia, A.; Merati, A.; Junter, G.A.: Batch cadmium (II) biosorption by an industrial residue of macrofungal biomass (Clitopilusscyphoides). Chem. Eng. J. 197, 261–271 (2012)

    Google Scholar 

  64. Yeddou-Mezenner, N.: Kinetics and mechanism of dye biosorption onto an untreated antibiotic waste. Desalination 262, 251–259 (2010)

    Google Scholar 

  65. Behloul, M.; Lounici, H.; Abdi, N.; Drouiche, N.; Mameri, N.: Adsorption study of metribuzin pesticide on fungus Pleurotus mutilus. Int. Biodeterior. Biodegrad. 1, 1–9 (2016)

    Google Scholar 

  66. Mohammed, E.M.A.; Hazem, A.; Nabila, S.A.; Hanan, S.I.: Response surface methodology for optimization of the adsorption capability of ball-milled pomegranate peel for different pollutants. J. Mol. Liq. 250, 433–445 (2018)

    Google Scholar 

  67. Gönen, F.; Aksu, Z.: Use of response surface methodology (RSM) in the evaluation of growth and copper (II) bioaccumulation properties of Candida utilis in molasses medium. J. Hazard. Mater. 154, 731–738 (2008)

    Google Scholar 

  68. Sharma, S.; Malik, A.; Satya, S.: Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr(VI) removal by Aspergillus lentulus AML05. J. Hazard. Mater. 164, 1198–1204 (2009)

    Google Scholar 

  69. Liu, X.; Chen, Z.Q.; Han, B.; Su, C.L.; Han, Q.; Chen, W.Z.: Biosorption of copper ions from aqueous solution using rape straw powders: optimization, equilibrium and kinetic studies. Ecotoxicol. Environ. Saf. 150, 251–259 (2018)

    Google Scholar 

  70. Taguchi, G.: Introduction to Quality Engineering, p. 191. McGraw-Hill, New York (1990)

    Google Scholar 

  71. Daneshvar, N.; Khataee, A.R.; Rasoulifard, M.H.; Pourhassan, M.: Biodegradation of dye solution containing Malachite Green, optimization of effective parameters using Taguchi method. J. Hazard. Mater. 143, 214–219 (2007)

    Google Scholar 

  72. Pundir, R.; Chary, G.H.V.C.; Dastidare, M.G.: Application of Taguchi method for optimizing the process parameters for the removal of copper and nickel by growing Aspergillus sp. Water Resour. Ind. (2016). https://doi.org/10.1016/j.wri.2016.05.001i

    Article  Google Scholar 

  73. Özdemir, U.; Özbay, B.; Özbay, I.; Veli, S.: Application of Taguchi L32 orthogonal array design to optimize copper biosorption by using Spaghnummoss. Ecotoxicol. Environ. Saf. 107, 229–235 (2014)

    Google Scholar 

  74. Garg, U.K.; Kaur, M.P.; Garg, V.K.; Sud, D.: Removal of nickel (II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresour. Technol. 99(5), 1325–1331 (2008)

    Google Scholar 

  75. Rahmani, M.; Kaykhaii, M.; Sasani, M.: Application of Taguchi L16 design method for comparative study of ability of 3A zeolite in removal of Rhodamine B and Malachite green from environmental water samples. Spectrochim. Acta Part A 188, 164–169 (2018)

    Google Scholar 

  76. Googerdchian, F.; Moheb, A.; Emadi, R.; Asgari, M.: Optimization of Pb(II) ions adsorption on nanohydroxyapatite adsorbents by applying Taguchi method. Hazard. Mater. 349, 186–194 (2018)

    Google Scholar 

  77. Lee, L.Y.; Lee, X.J.; Chia, P.C.; Tan, K.W.; Gan, S.: Utilisation of Cymbopogon citratus (lemon grass) as biosorbent for the sequestration of nickel ions from aqueous solution: equilibrium, kinetic, thermodynamics and mechanism studies. J. Taiwan Inst. Chem. Eng. 45, 1764–1772 (2014)

    Google Scholar 

  78. Boehm, H.P.: Some aspects of the surface chemistry of carbon black and other carbons. Carbon 32(5), 759–769 (1994)

    Google Scholar 

  79. Mishra, A.; Tripathi, B.D.; Rai, A.K.: Biosorption of Cr(VI) and Ni(II) onto Hydrilla verticillata dried biomass. Ecol. Eng. 73, 713–723 (2014)

    Google Scholar 

  80. Kirova, G.; Velkova, Z.; Stoytcheva, M.; Hristova, Y.; Iliev, I.; Gochev, V.R.: Biosorption of Pb(II) ions from aqueous solutions by waste biomass of Streptomyces fradiae pretreated with NaOH. Biotechnol. Biotechnol. Equip. 29(4), 689–695 (2015)

    Google Scholar 

  81. Selatnia, A.; Madani, A.; Bakhti, M.Z.; Kertous, L.; Mansouri, Y.; Yous, R.: Biosorption of Ni2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Miner. Eng. 17, 903–911 (2004)

    Google Scholar 

  82. Yen, H.Y.; Li, J.Y.: Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method. J. Environ. Manag. 161, 344–349 (2015)

    Google Scholar 

  83. Grün CH. Structure and biosynthesis of fungal alpha-glucans. Utrecht University Repository, (Dissertation); 2003. p 143

  84. Kiran, I.; Akar, T.; Tunali, S.: Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurospora crassa. Process Biochem. 40, 3550–3558 (2005)

    Google Scholar 

  85. Khambhaty, Y.; Mody, K.; Basha, S.; Jha, B.: Hg(II) removal from aqueous solution by dead fungal biomass of marine Aspergillus niger: kinetic studies. Sep. Sci. Technol. 43, 1221–1238 (2008)

    Google Scholar 

  86. Felmy AR, Girvin DC, Jenne EA. MINTEQ—Un programme informatique pour calculer les équilibres géochimiques aqueux EPA-600/3-84-031 US Environmental Protection Agency, Athens, GA; 1984. French

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Daoud.

Ethics declarations

Conflict of interest

No conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoud, N., Selatnia, A. Taguchi Optimization Method for Nickel Removal from Aqueous Solutions Using Non-living Pleurotus mutilus. Arab J Sci Eng 44, 10067–10077 (2019). https://doi.org/10.1007/s13369-019-04108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04108-x

Keywords

Navigation