Skip to main content
Log in

Evaluation of Pitting Susceptibility and Secondary Phase Formation in Newly Designed Ni-Free (Fe–16Cr–1Mo–1Si–0.2N–xMn–xCu) Duplex Stainless Steel Alloys

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The electrochemical properties of three Ni-free duplex stainless steel alloys, designed in-house, were investigated in chloride (0.2M NaCl) solution at room temperature. The corrosion performance was measured in terms of pitting potential (Epit), passive current density (ip), polarization resistance (Rp) and susceptibility to metastable pitting. The results obtained showed that alloy 2 (Fe–16Cr–5Mn–1Mo–1Si–1Cu–0.22N) exhibited the highest corrosion resistance (highest Epit, lowest ip, highest Rp and lowest metastable pitting susceptibility) among the designed alloys. Alloy 2 was also found to be free of any secondary phase precipitations (sigma phase, Cr nitrides, chi phase) when aged at 600–900 °C for 3–50 h owing to its optimized composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armas, I.A.: Duplex stainless steels: brief history and some recent alloys. Recent Patents Mech. Eng. 1, 51–57 (2008)

    Google Scholar 

  2. Wen, S.: Metallurgical evaluation of cast duplex stainless steels and their weldments. Master’s Thesis, University of Tennessee (2001)

  3. Nirosta, K.T.: Practical guidelines for the fabrication of duplex stainless steels, pp. 1–68. International Molybdenum Association (2014)

  4. Li, J.; Xu, Y.; Xiao, X.; Zhao, J.; Jiang, L.; Hu, J.: A new resource-saving, high manganese and nitrogen super duplex stainless steel 25Cr–2Ni–3Mo–xMn–N. Mater. Sci. Eng., A 527, 245–251 (2009)

    Google Scholar 

  5. Ma, Z.H.; Zhao, X.J.; Ge, C.S.; Ding, T.S.; Li, J.; Xiao, X.S.: A new resource-saving, high chromium and manganese super duplex stainless steels 29Cr–12Mn–2Ni–1Mo–Xn. J. Iron. Steel Res. Int. 18, 41–46 (2011)

    Google Scholar 

  6. Isern, N.L.; Luque, H.L.; Jimenez, I.L.; Biezma, M.V.: Identification of sigma and chi phases in duplex stainless steels. Mater. Charact. 112, 41–46 (2016)

    Google Scholar 

  7. Li, J.; Zhang, Z.; Chen, H.; Xiao, X.; Zhao, J.; Jiang, L.: New economical 19Cr duplex stainless steels. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 428–436 (2012)

    Google Scholar 

  8. Toor, I.H.; Hyun, P.J.; Kwon, H.S.: Development of high Mn–N duplex stainless steel for automobile structural components. Corros. Sci. 50, 404–410 (2008)

    Google Scholar 

  9. Jiang, D.W.; Ge, C.S.X.; Zhao, J.; Li, J.; Shi, L.I.; Xiao, X.S.: 22Cr High-Mn–N Low-Ni economical duplex stainless steels. J. Iron. Steel Res. Int. 19, 50–56 (2012)

    Google Scholar 

  10. Zhang, Z.X.; Ran, Q.X.; Xu, Y.L.; Yu, X.J.; Jiang, D.W.; Xiao, X.S.: A new series of Mo-free 21.5Cr–3.5Ni–xW–0.2N economical duplex stainless steels. J. Iron. Steel Res. Int. 21, 69–75 (2014)

    Google Scholar 

  11. Chen, H.; Ding, T.S.; Li, L.; Xiao, X.S.; Zhao, J.L.; Jiang, L.Z.: A new economical sigma-free duplex stainless steel 19Cr–6Mn–1.0Mo–0.5Ni–0.5W–0.5Cu–0.2N. J. Iron. Steel Res. Int. 18, 52–57 (2011)

    Google Scholar 

  12. Ran, Q.; Li, J.; Xu, Y.; Xiao, X.; Yu, H.; Jiang, L.: Novel Cu-bearing economical 21Cr duplex stainless steels. Mater. Des. 46, 758–765 (2013)

    Google Scholar 

  13. Merello, R.; Botana, F.J.; Botella, J.; Matres, M.V.; Marcos, M.: Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn–N duplex stainless steels. Corros. Sci. 45, 909–921 (2003)

    Google Scholar 

  14. Oh, K.; Toor, I.H.; Ahn, S.; Kwon, H.S.: Effects of Cu on the passive film stability of Fe–20Cr–xCu (x = 0, 2, 4 wt%) alloys in H2SO4 solution. Electrochim. Acta 88, 170–176 (2013)

    Google Scholar 

  15. Oh, K.; Toor, I.H.; Ahn, S.; Kwon, H.S.: Influence of Cu on the passivation behavior in sulfuric acid solution. Corrosion 69(6), 560–567 (2013)

    Google Scholar 

  16. Toor, I.H.; Ejaz, M.; Kwon, H.S.: Mott–Schottky analysis of passive films on Cu containing Fe–20Cr–xCu (x =  0, 4) alloys. Corros. Eng., Sci. Technol. 49, 390–395 (2014)

    Google Scholar 

  17. Jeon, S.H.; Kim, H.J.; Kong, K.H.; Park, Y.S.: Effects of copperaddition on the passivity and corrosion behavior of 27Cr–7Ni hyper duplex stainless steels in sulfuric acid solution. Mater. Trans. 56, 78–84 (2015)

    Google Scholar 

  18. Hillane, M.L.F.L.; Sergio, S.M.T.; Marcelo, M.; Walney, S.A.: The effect of copper addition on the corrosion resistance of cast duplex stainless steel. J. Mater. Res. Technol. 8(2), 2107–2119 (2019)

    Google Scholar 

  19. Sourisseau, T.; Chauveau, E.; Baroux, B.: Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media. Corros. Sci. 47, 1097–1117 (2005)

    Google Scholar 

  20. Oguziea, E.E.; Li, J.; Liu, Y.; Chen, D.; Li, Y.; Yang, K.; Wang, F.: The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels. Electrochim. Acta 55, 5028–5035 (2010)

    Google Scholar 

  21. Toor, I.H.: Mott–Schottky analysis of passive films on Si containing stainless steel alloy. J. Electrochem. Soc. 158, C391–C395 (2011)

    Google Scholar 

  22. Toor, I.H.; Kwon, J.; Kwon, H.S.: Effects of Si on the repassivation kinetics and SCC susceptibility of stainless steels. J. Electrochem. Soc. 155, C495–C500 (2008)

    Google Scholar 

  23. Prince, A.; Smolensky, P.: Optimality theory: Constraint interaction in generative grammar. Computer Science Technical Reports, 664, CU-CS-696-93 (1993)

  24. Long, C.J.; Delong, W.T.: The ferrite content of austenitic stainless steel weld metal. Weld. J. 52(7), 281s–297s (1973)

    Google Scholar 

  25. Andersson, J.O.; Helander, T.; Hoglund, L.; Shi, P.; Sundman, B.: Thermo-Calc and DICTRA, computational tools for materials science. Calphad 26, 273–312 (2002)

    Google Scholar 

  26. Lo, K.H.; Shek, C.H.; Lai, J.K.L.: Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 65, 39–104 (2009)

    Google Scholar 

  27. Lee, J.S.; Kim, S.T.; Lee, I.S.; Kim, G.T.; Kim, J.S.; Park, Y.S.: Effect of copper addition on the active corrosion behavior of hyper duplex stainless steels in sulfuric acid. Mater. Trans. 53, 1048–1055 (2012)

    Google Scholar 

  28. Banas, J.; Mazurkiewicz, A.: The effect of copper on passivity and corrosion behaviour of ferritic and ferritic-austenitic stainless steels. Mater. Sci. Eng., A 277, 183–191 (2000)

    Google Scholar 

  29. Ujiro, T.; Satoh, S.; Staehle, R.W.; Smyrl, W.H.: Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media. Corros. Sci. 43, 2185–2200 (2001)

    Google Scholar 

  30. Kim, M.J.; Lee, S.H.; Kim, J.G.; Yoon, J.B.: Effect of manganese on the corrosion behavior of low carbon steel in 10 wt% sulfuric acid. Electrochem. Soc. 9312, 1–9 (2010)

    Google Scholar 

  31. Kim, J.J.; Young, Y.M.: Study on the passive film of type 316 stainless steel. Int. J. Electrochem. Sci. 8, 11847–11859 (2013)

    Google Scholar 

  32. Pardo, A.; Merino, M.C.; Carboneras, M.; Coy, M.E.; Arrabal, R.: Pitting corrosion behaviour of austenitic stainless steels with Cu and Sn additions. Corros. Sci. 49, 510–525 (2007)

    Google Scholar 

  33. Lai, W.Y.; Zhao, W.Z.; Yin, Z.F.; Zhang, J.: EIS and XPS studies on passive film of AISI 304 stainless steel in dilute sulfuric acid solution. Surf. Interface Anal. 44, 418–425 (2012)

    Google Scholar 

  34. Pistorius, P.C.; Burstein, G.T.: Metastable pitting corrosion of stainless steel and the transition to stability. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 341, 531–539 (1992)

    Google Scholar 

  35. Pistorius, P.C.; Burstein, G.T.: Aspects of the effects of electrolyte composition on the occurrence of metastable pitting on stainless steel. Corros. Sci. 36, 525–538 (1994)

    Google Scholar 

  36. Burstein, G.T.; Pistorius, P.C.; Mattin, S.P.: The nucleation and growth of corrosion pits on stainless steel. Corros. Sci. 35, 57–62 (1993)

    Google Scholar 

  37. Armijo, J.S.: Intergranular corrosion of nonsensitized austenitic stainless steels. Corrosion 24, 24–30 (1968)

    Google Scholar 

  38. Kemp, M.; Bennekom, A.V.; Robinson, F.P.A.: Evaluation of the corrosion and mechanical properties of a range of experimental CrMn stainless steels. Mater. Sci. Eng., A 199, 183–194 (1995)

    Google Scholar 

  39. Chan, K.W.; Tjong, S.C.: Effect of secondary phase precipitation on the corrosion behavior of duplex stainless steels. Materials 7, 5268–5304 (2014)

    Google Scholar 

  40. Alvarez, A.I.; Degallaix, M.S.: Duplex Stainless Steels. Wiley, Hoboken (2009)

    Google Scholar 

  41. Chen, T.H.; Weng, K.L.; Yang, J.R.: The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel. Mater. Sci. Eng., A 338, 259–270 (2002)

    Google Scholar 

  42. Bhattacharya, A.; Singh, P.M.: Electrochemical behavior of duplex stainless steels in caustic environment. Corros. Sci. 53, 71–81 (2011)

    Google Scholar 

  43. Hong, J.; Han, D.; Tan, H.; Li, J.; Jiang, Y.: Evaluation of aged duplex stainless steel UNS S32750 susceptibility to intergranular corrosion by optimized double loop electrochemical potentiokinetic reactivation method. Corros. Sci. 68, 249–255 (2013)

    Google Scholar 

  44. Lo, K.H.; Kwok, C.T.; Chan, W.K.; Zeng, D.: Corrosion resistance of duplex stainless steel subjected to long-term annealing in the spinodal decomposition temperature range. Corros. Sci. 55, 267–271 (2012)

    Google Scholar 

  45. Lo, K.H.; Kwok, C.T.; Chan, W.K.: Characterization of duplex stainless steel subjected to long-term annealing in the sigma phase formation temperature range by the DLEPR test. Corros. Sci. 53, 3697–3703 (2011)

    Google Scholar 

  46. Magnabosco, R.: Kinetics of sigma phase formation in a Duplex Stainless Steel. Mater. Res. 12, 321–327 (2009)

    Google Scholar 

  47. Escriba, M.; Morris, E.M.; Plaut, R.L.; Padilha, A.F.: Chi-phase precipitation in a duplex stainless steel. Mater. Charact. 60, 1214–1219 (2009)

    Google Scholar 

  48. Pettersson, N.; Pettersson, R.F.A.; Wessman, S.: Precipitation of chromium nitrides in the super duplex stainless steel 2507. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46, 1062–1072 (2015)

    Google Scholar 

  49. Ramirez, A.J.; Lippold, J.C.; Brandi, S.D.: The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels. Metall. Mater. Trans. A 34, 1575–1597 (2003)

    Google Scholar 

  50. Maetz, J.Y.; Douillard, T.; Cazottes, S.; Verdu, C.; Kleber, X.: M23C6 carbides and Cr2N nitrides in aged duplex stainless steel: a SEM, TEM and FIB tomography investigation. Micron 84, 43–53 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by King Fahd University of Petroleum and Minerals (KFUPM) Saudi Arabia, under the research Grant# IN161009 in conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan-ul-Haq Toor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, F.M., Toor, IuH. Evaluation of Pitting Susceptibility and Secondary Phase Formation in Newly Designed Ni-Free (Fe–16Cr–1Mo–1Si–0.2N–xMn–xCu) Duplex Stainless Steel Alloys. Arab J Sci Eng 45, 599–608 (2020). https://doi.org/10.1007/s13369-019-04098-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04098-w

Keywords

Navigation