Skip to main content
Log in

Influence of Cement Type and Sample Preparation on the Small-Strain Behaviour of Sands

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Cementing of soil grains occurs naturally in many weak rocks and soils due to various environmental processes, which might be attributed mainly to the stress state, curing, and type of cement. This study reports an intensive series of triaxial testing results based on the small-strain measurements of artificially cemented sand grains. Influence of five different sample preparation methods, and four different cement types on the triaxial behaviour, were studied. The cementing agents used during the experimental works were gypsum, lime, calcite, and Portland cement. It was observed that type of cement has a significant effect on the testing results. The change in triaxial behaviour of sands due to the differences in sample preparation techniques was slightly affected by Portland cement, but significantly affected by the gypsum, lime, and calcite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Gens, A.; Nova, R.: Conceptual bases for a constitutive model for model for bonded soils and weak rocks. In: Anagnostopoulos, A., et al. (eds.) Geotechnical Engineering of Hard Soils-Soft Rocks, vol. 1, pp. 485–494. Balkema, Rotterdam (1993)

    Google Scholar 

  2. Allman, M.A.; Poulos, H.G.: Stress–stress behaviour of an artificially cemented calcareous soil. In: Jewell, R.J., Andrews, D.C. (eds.) Proceedings of the International Conference on Calcareous Sediments, vol. 2, pp. 51–58. Balkema, Rotterdam (1988)

    Google Scholar 

  3. Huang, J.T.; Airey, D.W.: Properties of artificially cemented carbonate sand. J. Geotech. Geoenviron. Eng. Div. 124(6), 492–499 (1998)

    Article  Google Scholar 

  4. Ismail, M.A.; Joer, H.A.; Randolph, M.F.: Sample preparation technique for artificially cemented sands. Geotech. Test. J. 23(1), 141–157 (2000)

    Google Scholar 

  5. Fernandez, A.L.; Santamarina, J.C.: Effect of cementation on the small-strain parameters of sands. Can. Geotech. J. 38, 191–199 (2001)

    Article  Google Scholar 

  6. Baudet, B.; Stallebrass, S.: A constitutive model for structured clays. Géotechnique 54(4), 269–278 (2004)

    Article  Google Scholar 

  7. Trhlikova, J.; Masin, D.; Bohac, J.: Small-strain behaviour of cemented soils. Geotechnique 62(10), 943–947 (2012)

    Article  Google Scholar 

  8. Mola-Abasi, H.; Khajech, A.; Semsani, S.N.: Variables controlling tensile strength of stabilized sand with cement and zeolite. J. Adhes. Sci. Technol. 32(9), 947–962 (2018)

    Article  Google Scholar 

  9. Georgees, R.N.; Hassan, R.A.; Evans, R.P.; Jegatheesan, P.: Resilient response characterization of pavement foundation materials using a polyacrylamide-based stabilizer. J. Mater. Civ. Eng. 30(1), 04017252 (2018)

    Article  Google Scholar 

  10. Wang, D.X.; Zentar, R.; Abriak, N.E.: Durability and swelling of solidified/stabilized dredged marine soils with class-F fly ash, cement, and lime. J. Mater. Civ. Eng. 30(3), 04018013 (2018)

    Article  Google Scholar 

  11. Sharma, L.K.; Sirdesai, N.N.; Sharma, K.M.; Singh, T.N.: Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: a comparative study. Appl. Clay Sci. 152, 183–195 (2018)

    Article  Google Scholar 

  12. Cabalar, A.F.; Karabash, Z.; Erkmen, O.: Stiffness of a biocemented sand at small strains. Eur. J. Environ. Civ. Eng. 1, 54 (2018). https://doi.org/10.1080/19648189.2016.1248791

    Article  Google Scholar 

  13. Acar, B.Y.; El-Tahir, A.E.: Low strain dynamic properties of artificially cemented sands. J. Geotech. Eng. Div. 112(11), 1001–1015 (1986)

    Article  Google Scholar 

  14. Rotta, G.V.; Consoli, N.C.; Prietto, P.D.M.; Coop, M.R.; Graham, J.: Isotropic yielding in an artificially cemented soil cured under stress. Géotechnique 53(5), 493–501 (2003)

    Article  Google Scholar 

  15. Maccarini, M.: Laboratory studies of weakly bonded artificial soil. Ph.D. Thesis, University of London (1987)

  16. Bressani, L.A.: Experimental properties of bonded soils. Ph.D. Thesis, University of London (1990)

  17. Malandraki, V.: The engineering behaviour of a weakly bonded artificial soil. Ph.D. Thesis, University of Durham (1994)

  18. Ismail, M.A.; Joer, H.A.; Randolph, M.F.; Meritt, A.: Cementation of porous materials using calcite. Géotechnique 52(5), 313–324 (2002)

    Article  Google Scholar 

  19. Kucharski, E.; Price, G.; Li, H.; Joer, H.A.: Engineering properties of CIPS cemented calcareous sand. In: Sijing, W.; Marinos, P. (eds.) Engineering Geology: Proceedings of the 30th International Geological Congress, Beijing, China, 4–14 August 1996, vol. 23, pp. 92–97. Brill Academic, Amsterdam (1996)

  20. Micic, S.; Shang, J.Q.; Lo, K.Y.: Improvement of the load-carrying capacity of offshore skirted foundations by electrokinetics. Can. Geotech. J. 40(5), 949–963 (2003)

    Article  Google Scholar 

  21. Mitchell, J.K.; Santamarina, J.C.: Biological considerations in geotechnical engineering. J. Geotech. Geoenviron. Eng. 131(10), 1222–1233 (2005)

    Article  Google Scholar 

  22. Bressani, L.A.; Vaughan, P.R.: Damage to soil during triaxial testing. In: Proceedings of the XII International Conference on Soil Mechanics and Foundation Engineering, vol. 1, pp. 17–20, Rio de Janeiro (1989)

  23. Zhu, F.; Clark, J.I.; Paulin, M.J.: Factors affecting at-rest lateral stress in artificially cemented sands. Can. Geotech. J. 32, 195–203 (1995)

    Article  Google Scholar 

  24. Consoli, N.C.; Rotta, G.V.; Prietto, P.D.M.: Influence of curing under stress on the triaxial response of cemented soils. Geotechnique 50(1), 99–105 (2000)

    Article  Google Scholar 

  25. Mitchell, J.K.: Fundamentals of Soil Behaviour. Wiley, Berlin (1976)

    Google Scholar 

  26. Rippa, F.; Picarelli, L.: Some considerations on index properties of Southern Italian shales. In: Proceedings of the International Symposium on the Geotechnics of Structurally Complex Formations, vol. 1, pp. 401–406, Capri (1977)

  27. Burland, J.B.: On the compressibility and shear strength of natural clays. Géotechnique 40(3), 329–378 (1990)

    Article  Google Scholar 

  28. Cotecchia, F.; Chandler, R.J.: A general framework for the mechanical behaviour of clays. Géotechnique 50(4), 431–447 (2000)

    Article  Google Scholar 

  29. Chandler, R.J.: Clay sediments in depositional basins: the geotechnical cycle. Q. J. Eng. Geol. Hydrogeol. 33, 7–39 (2000)

    Article  Google Scholar 

  30. Fearon, R.E.; Coop, M.R.: Reconstitution: what makes an appropriate reference material? Géotechnique 50(4), 471–477 (2000)

    Article  Google Scholar 

  31. Rendulic, L.: Relation between void ratio and effective principal stresses for a remoulded silty clay. In: 1st International Conference on Soil Mechanics, vol. 3, pp. 48–53, Harvard (1936)

  32. Hvorslev, M.J.: Uber die Festigkeitseigenschaften gestfirter bindiger Boden. Ingeniorvidenskabelige Skrifter A, No. 45, Copenhagen (1937)

  33. Roscoe, K.H.; Schofield, A.N.; Wroth, C.P.: On the yielding of soils. Géotechnique 8(1), 22–53 (1958)

    Article  Google Scholar 

  34. Schofield, A.N.; Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, Maidenherd, p. 310. ISBN 978-0641940484 (1968)

  35. Malandraki, V.; Toll, D.G.: Triaxial tests on weakly bonded soil with changes in stress path. J. Geotech. Geoenviron. Eng. 127(3), 282–291 (2001)

    Article  Google Scholar 

  36. Jardine, R.J.: Some observations on the kinematic nature of soil stiffness. Soils Found. 32(2), 111–124 (1992)

    Article  Google Scholar 

  37. Clayton, C.R.I.; Heymann, G.: Stiffness of geomaterials at very small strains. Géotechnique 51(3), 245–255 (2001)

    Article  Google Scholar 

  38. Thevanayagam, S.: Effect of fines on confining stress on undrained shear strength of silty sands. J. Geotech. Geoenviron. Eng. 124(6), 479–491 (1998)

    Article  Google Scholar 

  39. Monkul, M.M.; Ozden, G.: Compressional behavior of clayey sand and transition fines content. Eng. Geol. 89, 195–205 (2007)

    Article  Google Scholar 

  40. Cabalar, A.F.: Applications of the triaxial, resonant column and oedometer tests to the study of micaceous sands. Eng. Geol. 112, 21–28 (2010)

    Article  Google Scholar 

  41. Cabalar, A.F.; Clayton, C.R.I.: Some observations of the effects of pore fluids on the triaxial behavior of a sand. Granul. Matter 12, 87–95 (2010)

    Article  Google Scholar 

  42. Cabalar, A.F.; Hasan, R.A.: Compressional behaviour of various size/shape sand- clay mixtures with different pore fluids. Eng. Geol. 164, 36–49 (2013)

    Article  Google Scholar 

  43. Hamidi, A.; Haeri, S.M.: Stiffness and deformation characteristics of a cemented gravely sand. Int. J. Civ. Eng. 6(3), 159–173 (2008)

    Google Scholar 

  44. Burland, J.B.; Symes, M.: A simple axial displacement gauge for use in the triaxial apparatus. Géotechnique 32(1), 62–65 (1982)

    Article  Google Scholar 

  45. Jardine, R.J.; Symes, M.J.; Burland, J.B.: The measurement of soil stiffness in the triaxial apparatus. Géotechnique 34(3), 323–340 (1984)

    Article  Google Scholar 

  46. Clayton, C.R.I.; Khatrush, S.A.: A new device for measuring local axial strains on triaxial specimens. Géotechnique 36(4), 593–597 (1986)

    Article  Google Scholar 

  47. Cabalar, A.F.: Influence of grain shape and gradation on the shear behavior of sand mixtures. Sci. Iran. (2018). https://doi.org/10.24200/sci.2017.4223

    Article  Google Scholar 

  48. Mollamahmutoglu, M.; Avci, E.: Cement grain size effect on the geotechnical properties of stabilized clay. Sci. Iran. 1, 6 (2018). https://doi.org/10.24200/sci.2018.5237.1158

    Article  Google Scholar 

  49. Zhao, C.; Hou, R.; Zhou, J.: Particle contact characteristics of coarse-grained soils under normal contact. Eur. J. Environ. Civ. Eng. 22(1), 114–129 (2018)

    Google Scholar 

  50. Park, T.W.; Kim, H.J.; Tanvir, M.T.; Lee, J.B.; Moon, S.G.: Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils. Geomech. Eng. 14(1), 99–105 (2018)

    Google Scholar 

  51. Nasehi, S.A.; Uromeihy, A.; Nikudel, M.R.; Morsali, A.: Influence of gas oil contamination on geotechnical properties of fine and coarse-grained soils. Geotech. Geol. Eng. 34(1), 333–345 (2016)

    Article  Google Scholar 

  52. El Howayek, M.; Bobet, A.; Santagata, M.: Microstructure and cementation of two carbonatic fine-grained soils. Can. Geotech. J. 56(3), 320–334 (2019)

    Article  Google Scholar 

  53. Qian, Z.Z.; Sheng, M.Q.; Tian, K.P.: Cementation mechanism and micromechanical model of gobi gravel soil. Rock Soil Mech. 38(2), 138–144 (2017)

    Google Scholar 

  54. Shinsha, H.; Kumagai, T.: Material properties of solidified soil grains produced from dredged marine clay. Soils Found. 58(3), 678–688 (2018)

    Article  Google Scholar 

  55. Kang, X.; Kang, G.C.; Chang, K.; Ge, L.: Chemically stabilized soft clays for road-base construction. J. Mater. Civ. Eng. 27(7), 04014199 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Firat Cabalar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabalar, A.F., Karabash, Z. Influence of Cement Type and Sample Preparation on the Small-Strain Behaviour of Sands. Arab J Sci Eng 44, 8835–8848 (2019). https://doi.org/10.1007/s13369-019-04070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04070-8

Keywords

Navigation