Skip to main content

Advertisement

Log in

Impact of Slag Content and Curing Methods on the Strength of Alkaline-Activated Silico-Manganese Fume/Blast Furnace Slag Mortars

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the reported study, the effect of slag content and curing methods on the strength development of alkaline activated (AA) silico-manganese fume (SiMnF (S)) and ground granulated blast furnace slag (GBSF (G)) blended mortar using NaOHaq and Na2SiO3aq was studied. The mixtures were prepared with 100% SiMnF (AAS100G0), i.e. control binder or 70% SiMnF plus 30% GBFS (AAS70G30), i.e. optimum binder and subjected to room-curing (CR) (25±2 °C) and heat-curing (CH) (60 °C for 24 h in oven) were examined. The raw materials and binders were characterized, while flow and compressive strength of mortar was evaluated. A linear increase in strength was noted in the room-cured specimens, regardless of binder type. The 3-day strength (42.6 MPa) of heat-cured AAS70G30CH specimens was 189 and 97% of the 3-day and 28-day strength, respectively, of room-cured specimens. However, a curing temperature beyond room-temperature did not favour the reaction of AAS100G0 system due to high Mn/Ca ratio and carbonation. It is postulated that the addition of 30% GBFS contributed to the strength and stability in the development of AASG mortar. Heat-curing of AAS70G30CH resulted in highest early-age strength due to dense microstructure induced by conspicuous embedment of Ca ions to the skeletal framework thereby increasing the amorphousity of the binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Davidovits, J.; Comrie, D.C.; Paterson, J.H.; Ritcey, D.J.: Geopolymeric concretes for environmental protection. Concr. Int. 12(7), 30–40 (1990)

    Google Scholar 

  2. Elibol, C.; Sengul, O.: Effects of activator properties and ferrochrome slag aggregates on the properties of alkali-activated blast furnace slag mortars. Arab. J. Sci. Eng. 41(4), 1561–1571 (2016)

    Article  Google Scholar 

  3. Rao, G.M.; Rao, T.D.G.: Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar. Arab. J. Sci. Eng. 40(11), 3067–3074 (2015)

    Article  Google Scholar 

  4. Salami, B.A.; Johari, M.A.M.; Ahmad, Z.A.; Maslehuddin, M.: POFA-engineered alkali-activated cementitious composite performance in acid environment. J. Adv. Concr. Technol. 15(11), 684–699 (2017)

    Article  Google Scholar 

  5. Yusuf, M.O.; Johari, M.A.M.; Ahmad, Z.A.; Maslehuddin, M.: Evolution of alkaline activated ground blast furnace slag-ultrafine palm oil fuel ash based concrete. Mater. Des. 55, 387–393 (2014)

    Article  Google Scholar 

  6. Rakhimova, N.R.; Rakhimov, R.Z.: Toward clean cement technologies: a review on alkali-activated fly-ash cements incorporated with supplementary materials. J. Non Cryst. Solids 509, 31–41 (2019)

    Article  Google Scholar 

  7. Nath, P.; Sarker, P.K.: Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 66, 163–171 (2014)

    Article  Google Scholar 

  8. Bernal, S.A.; Rodríguez, E.D.; de Gutiérrez, R.M.; Gordillo, M.; Provis, J.L.: Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 46(16), 5477–5486 (2011)

    Article  Google Scholar 

  9. Kumar, S.; Kumar, R.; Mehrotra, S.P.: Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J. Mater. Sci. 45(3), 607–615 (2010)

    Article  Google Scholar 

  10. Yusuf, M.O.; Johari, M.A.M.; Ahmad, Z.A.; Maslehuddin, M.: Strength and microstructure of alkali-activated binary blended binder containing palm oil fuel ash and ground blast-furnace slag. Constr. Build. Mater. 52, 504–510 (2014)

    Article  Google Scholar 

  11. Najimi, M.; Ghafoori, N.: Engineering properties of natural pozzolan/slag based alkali-activated concrete. Constr. Build. Mater. 208, 46–62 (2019)

    Article  Google Scholar 

  12. Nath, S.K.; Kumar S.: Influence of granulated silico-manganese slag on compressive strength and microstructure of ambient cured alkali-activated fly ash binder. Waste Biomass Valorization 10, 2045–2055 (2019)

    Article  Google Scholar 

  13. Rashad, A.M.: Properties of alkali-activated fly ash concrete blended with slag. Iran. J. Mater. Sci. Eng. 10(1), 57–64 (2013)

    Google Scholar 

  14. Adam, A.: Strength and durability properties of alkali activated slag and fly ash-based geopolymer concrete (2009)

  15. Li, X.; Wang, Z.; Jiao, Z.: Influence of curing on the strength development of calcium-containing geopolymer mortar. Mater. (Basel) 6(11), 5069–5076 (2013)

    Article  Google Scholar 

  16. Kim, B.-J.; Yi, C.; Kang, K.-I.: Microwave curing of alkali-activated binder using hwangtoh without calcination. Constr. Build. Mater. 98, 465–475 (2015)

    Article  Google Scholar 

  17. Narayanan, A.; Shanmugasundaram, P.: An experimental investigation on flyash-based geopolymer mortar under different curing regime for thermal analysis. Energy Build. 138, 539–545 (2017)

    Article  Google Scholar 

  18. Helmy, A.I.I.: Intermittent curing of fly ash geopolymer mortar. Constr. Build. Mater. 110, 54–64 (2016)

    Article  Google Scholar 

  19. Nguyen, K.T.; Le, T.A.; Lee, J.; Lee, D.; Lee, K.: Investigation on properties of geopolymer mortar using preheated materials and thermogenetic admixtures. Constr. Build. Mater. 130, 146–155 (2017)

    Article  Google Scholar 

  20. Atiş, C.D.; Görür, E.B.; Karahan, O.; Bilim, C.; Ilkentapar, S.; Luga, E.: Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Constr. Build. Mater. 96, 673–678 (2015)

    Article  Google Scholar 

  21. Kürklü, G.: The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Compos. Part B Eng. 92, 9–18 (2016)

    Article  Google Scholar 

  22. Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.J.; Rangan, B.V.: On the development of fly ash-based geopolymer concrete. Mater. J. 101(6), 467–472 (2004)

    Google Scholar 

  23. Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H.: Fly ash-based geopolymers: the relationship between composition, pore structure and efflorescence. Cem. Concr. Res. 64, 30–41 (2014)

    Article  Google Scholar 

  24. Nasvi, M.M.C.; Gamage, R.P.; Jay, S.: Geopolymer as well cement and the variation of its mechanical behavior with curing temperature. Greenh. Gases Sci. Technol. 2(1), 46–58 (2012)

    Article  Google Scholar 

  25. Djobo, J.N.Y.; Elimbi, A.; Tchakouté, H.K.; Kumar, S.: Mechanical properties and durability of volcanic ash based geopolymer mortars. Constr. Build. Mater. 124, 606–614 (2016)

    Article  Google Scholar 

  26. Buchwald, A.; Schulz, M.: Alkali-activated binders by use of industrial by-products. Cem. Concr. Res. 35(5), 968–973 (2005)

    Article  Google Scholar 

  27. Aprianti, E.; Shafigh, P.; Bahri, S.; Farahani, J.N.: Supplementary cementitious materials origin from agricultural wastes—a review. Constr. Build. Mater. 74, 176–187 (2015)

    Article  Google Scholar 

  28. Hernández-Pellón, A.; Fernández-Olmo, I.; Ledoux, F.; Courcot, L.; Courcot, D.: Characterization of manganese-bearing particles in the vicinities of a manganese alloy plant. Chemosphere 175, 411–424 (2017)

    Article  Google Scholar 

  29. Thomas, K.; Gundewar, C.S.: Market survey on manganese ore (2014)

  30. Frias, M.; Rodríguez, C.: Effect of incorporating ferroalloy industry wastes as complementary cementing materials on the properties of blended cement matrices. Cem. Concr. Compos. 30(3), 212–219 (2008)

    Article  Google Scholar 

  31. Frias, M.; de Rojas, M.I.S.; Menendez, I.; de Lomas, M.G.; Rodriguez, C.: Properties of SiMn slag as apozzolanic material in portland cement manufacture. Mater. Constr. 55(280), 53–62 (2005)

    Article  Google Scholar 

  32. Péra, J.; Ambroise, J.; Chabannet, M.: Properties of blast-furnace slags containing high amounts of manganese. Cem. Concr. Res. 29(2), 171–177 (1999)

    Article  Google Scholar 

  33. Kumar, S.; García-Triñanes, P.; Teixeira-Pinto, A.; Bao, M.: Development of alkali activated cement from mechanically activated silico-manganese (SiMn) slag. Cem. Concr. Compos. 40, 7–13 (2013)

    Article  Google Scholar 

  34. Nath, S.K.; Kumar, S.: Reaction kinetics, microstructure and strength behavior of alkali activated silico-manganese (SiMn) slag-fly ash blends. Constr. Build. Mater. 147, 371–379 (2017)

    Article  Google Scholar 

  35. Criado, M.; Bernal, S.A.; Garcia-Triñanes, P.; Provis, J.L.: Influence of slag composition on the stability of steel in alkali-activated cementitious materials. J. Mater. Sci. 53(7), 5016–5035 (2018)

    Article  Google Scholar 

  36. Najamuddin, S.K.; Johari, M.A.M.; Maslehuddin, M.; Yusuf, M.O.: Synthesis of low temperature cured alkaline activated silicomanganese fume mortar. Constr. Build. Mater. 200, 387–397 (2019)

    Article  Google Scholar 

  37. Choi, S.; Kim, J.; Oh, S.; Han, D.: Hydro-thermal reaction according to the CaO/SiO2 mole-ratio in silico-manganese slag. J. Mater. Cycles Waste Mana. 19(1), 374–381 (2017)

    Article  Google Scholar 

  38. Allahverdi, A.; Ahmadnezhad, S.: Mechanical activation of silicomanganese slag and its influence on the properties of Portland slag cement. Powder Technol. 251, 41–51 (2014)

    Article  Google Scholar 

  39. Shi, C.; Roy, D.; Krivenko, P.: Alkali-Activated Cements and Concretes. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  40. Bernal, S.A.; Provis, J.L.; Rose, V.; De Gutierrez, R.M.: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33(1), 46–54 (2011)

    Article  Google Scholar 

  41. Cheng, T.W.; Chiu, J.P.: Fire-resistant geopolymer produced by granulated blast furnace slag. Miner. Eng. 16(3), 205–210 (2003)

    Article  Google Scholar 

  42. BS EN 1015: Determination of consistence of fresh mortar by flow table and bulk density (1999)

  43. Puertas, F.; Varga, C.; Alonso, M.M.: Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cem. Concr. Compos. 53, 279–288 (2014)

    Article  Google Scholar 

  44. Saha, S.; Rajasekaran, C.: Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Constr. Build. Mater. 146, 615–620 (2017)

    Article  Google Scholar 

  45. Wang, S.-D.; Scrivener, K.L.: Hydration products of alkali activated slag cement. Cem. Concr. Res. 25(3), 561–571 (1995)

    Article  Google Scholar 

  46. Dombrowski, K.; Buchwald, A.; Weil, M.: The influence of calcium content on the structure and thermal performance of fly ash-based geopolymers. J. Mater. Sci. 42(9), 3033–3043 (2007)

    Article  Google Scholar 

  47. Shi, Z.; Shi, C.; Wan, S.; Li, N.; Zhang, Z.: Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars. Cem. Concr. Res. 113, 55–64 (2018)

    Article  Google Scholar 

  48. Collier, N.C.: Transition and decomposition temperatures of cement phases–a collection of thermal analysis data. Ceram. Silikaty 60(4), 338–343 (2016)

    Google Scholar 

  49. Ghafari, E.; Feys, D.; Khayat, K.: Feasibility of using natural SCMs in concrete for infrastructure applications. Constr. Build. Mater. 127, 724–732 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The support provided by School of Civil Engineering at Universiti Sains Malaysia is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moruf Olalekan Yusuf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasir, M., Megat Johari, M.A., Yusuf, M.O. et al. Impact of Slag Content and Curing Methods on the Strength of Alkaline-Activated Silico-Manganese Fume/Blast Furnace Slag Mortars. Arab J Sci Eng 44, 8325–8335 (2019). https://doi.org/10.1007/s13369-019-04063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04063-7

Keywords

Navigation