Skip to main content
Log in

An Alternate Method for Prediction and Analysis of Notch Characteristics in Indoor Power Lines Under Varied Channel Conditions

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

One of the challenges faced by indoor power line communication systems is the frequency-selective channels that are time varying and dependent on a large number of variabilities. A probable solution is to extract as much determinism as possible through prediction and statistical analysis of the frequency-selective notches. However, such deterministic tools are available only for simple open- and short-circuit branches and not for complex loads and topologies. This paper proposes an alternate method to predict and analyze notches using a minimum of four parameters without evaluating the transfer function. Termed as the load frequency mapping, the method is applicable for any frequency-dependent time-invariant loads and topologies and also capable of performing statistical analysis of random channels. A high decrease in prediction error (99.46–93.63%) is found for all the channels analyzed. Statistical analysis of 26 power line cables using random loads shows that some cables and loads offer more variations in frequency selectivity than others. For capacitive loads, the variation is more for the low-frequency notches and for those modeled as parallel resonant circuits at the frequencies near the resonance. Maximum variation is found for cables with high characteristic impedance with loads having high resonant frequencies and low quality factor and least for inductive loads. The power line therefore has considerable amount of determinism, and this can be incorporated to complement for fading channels or analysis of variability optimized for dual purpose of power delivery and data transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

BPLC:

Broadband PLC

BW:

Bandwidth

CWB:

Coherence bandwidth

DMT:

Discrete multitone modulation

DB:

Derivation box

EMC:

Electromagnetic compatibility

FDL:

Frequency-dependent load

HAN:

Home area network

HAP:

House access point

HV:

High voltage

IMC:

Imaginary characteristics

IA:

Input admittance

ISI:

Inter symbol interference

IED:

Intelligence electronic device

IR:

Impulse response

LFC:

Load frequency curve

LFM:

Load frequency mapping

LPTV:

Linear periodic time variant

LV:

Low voltage

MTL:

Multi-conductor line

MV:

Medium voltage

NB-PLC:

Narrowband PLC

PL:

Power line

PLC:

Power line communication

RMS-DS:

Root mean square delay spread

SG:

Smart grid

SP:

Service panel

TEM:

Transverse electromagnetic

TF:

Transfer function

TL:

Transmission line

C :

Capacitance/length

L :

Inductance/length

\(Z_{0}\) :

Characteristics impedance

\(Z(\omega )/Z(\omega ,t)\) :

Time-variant load

R :

Resistance

\(\omega \) :

Angular frequency

\(\omega _{0}\) :

Resonant angular frequency

\(f_{0}\) :

Resonant frequency

Q :

Quality factor

\(\varphi \) :

Phase term in time-dependent load

\(Z_{\mathrm{A}}\) :

Offset impedance

\(Z_{\mathrm{B}}\) :

Amplitude of variation

H(f):

Transfer function

\(N^{\prime }\) :

Number of paths

\(g_{i} \) :

Complex number

T :

Time period

F :

Frequency

\(\tau _{i}\) :

Path delay

\(\alpha (f)\) :

Attenuation coefficient

\(d_{i}\) :

Path length

A, B, C, D:

ABCD matrices

\(Z_{\mathrm{L}} \) :

Load impedance

\(Z_{\mathrm{S}}\) :

Source impedance

\(f_k^{\mathrm{open}}\) :

Open-circuit notch frequency

\(f_k^{\mathrm{short}}\) :

Short-circuit notch frequency

\(v_\mathrm{p}\) :

Phase velocity

\(l_{\mathrm{br}}\) :

Branch length

\(Z_{\mathrm{in}}\) :

Input impedance

\(Z_{\mathrm{br}}\) :

Load in branch

\(\gamma \) :

Propagation constant

y :

Imaginary load

x :

Real component of the load

\(Y_{\mathrm{in}}\) :

Input admittance

\(f_1^{\mathrm{open}}\) :

First open-circuit notch frequency

w :

Roll-off

a :

Constant

\(R^2\) :

Regression value

\(F_{i}(y)\) :

Notch frequency

C1–C26:

Cables 1 to 26

\(\hbox {Im} \left\{ Z_{\mathrm{br}}(f)\right\} \) :

Imaginary characteristics of load

\(\Delta f\) :

Deviation of frequency

\(Y^{N}_{IN{\text {-}}STAR}\) :

IA (Star)

\(Z^{N}_{\mathrm{total}}\) :

Total impedance at node n

\(Y_{\mathrm{open}}\) :

IA of open branch

\(Y^{N}_{IN{\text {-}}BUS}\) :

IA (Bus)

\(Y_{N-1}\) :

IA of qp

\(y_{N-1}\) :

IA of qn

\(Y_{\mathrm{open}\_N-1}\) :

IA of mq

\(y^{2}_{IN{\text {-}}STAR}\) :

IA of Star (2 branches)

\(y^{3}_{IN{\text {-}}STAR}\) :

IA of Star (3 branches)

\(y^{8}_{IN{\text {-}}STAR}\) :

IA of Star (8 branches)

\(y^{1}_{IN{\text {-}}BUS}\) :

IA of Bus (1 branch)

\(y^{2}_{IN{\text {-}}BUS}\) :

IA of Bus (2 branches)

\(y^{6}_{IN{\text {-}}BUS}\) :

IA of Bus (6 branches)

L :

Inductive load

C :

Capacitive load

\(\hbox {RLC}_{1}\) :

RLC load (experimental)

\(\hbox {RLC}_{2}\) :

RLC load (experimental)

\(\hbox {RLC}_{3}\) :

RLC load (experimental)

\(\mu \) :

Mean of notches

\(\sigma \) :

Standard deviation of notch

\(\mu _{\mathrm{p}}\) :

Mean of predicted notches

\(\sigma _{\mathrm{p}}\) :

Standard deviation of predicted notches

\(\mu _{\mathrm{a}}\) :

Mean of actual notch

\(\sigma _{\mathrm{a}}\) :

Standard deviation of actual notch

\(\mu _{\Delta f}\) :

Mean of \(\Delta f\)

\(\sigma _{\Delta f}\) :

Standard deviation of \(\Delta f\)

RLC1:

RLC load

RLC2:

RLC load

RLC3:

RLC load

RLC4:

RLC Load

References

  1. Kashef, M.; Torky, A; Abdallah, M.; Al-Dhahir, N.; Qaraqe, K.: On the achievable rate of a hybrid PLC/VLC/RF communication system. In: IEEE Global Communications Conference, GLOBECOM 2015 (2015). https://doi.org/10.1109/GLOCOM.2015.7417378

  2. Chatterjee, S.; Baishya, R.; Khan, K.; Sarma, P.; Tiru, B.: Characteristics of visible light communication using light-emitting diodes. In: Proceedings of the International Conference on Computing and Communication Systems, pp. 505–513 (2018)

    Chapter  Google Scholar 

  3. Tiru, B.: Exploiting power line for communication purpose: features and prospects of power line communication. In: Sarma, K., Sarma, M., Sarma, M. (eds.) Intelligent Applications for Heterogeneous System Modeling and Design, pp. 320–334. IGI Global, Pennsylvania (2015)

    Chapter  Google Scholar 

  4. Biglieri, E.: Coding and modulation for a horrible channel. IEEE Commun. Mag. 41, 92–98 (2003)

    Article  Google Scholar 

  5. Tiru, B.; Boruah, P.K.: Multipath effects and adaptive transmission in presence of indoor power line background noise. Int. J. Commun. Syst. 23(1), 63–76 (2010)

    Google Scholar 

  6. Baishya, R.; Tiru, B.; Chatterjee, S.; Sarma, U.; Gogoi, K.: Time dependent indoor power line background noise: analysis, simulation and effect on communication system: study of indoor power line noise environment. In: Proceedings International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES), pp. 621–625. IEEE (2016)

  7. Zhu, W.; Zhu, X.; Lim, E.; Huang, Y.: State-of-art power line communications channel modelling. Procedia Comput. Sci. 17, 563–570 (2013)

    Article  Google Scholar 

  8. Tlich, M.; Zeddam, A.; Moulin, F.; Gauthier, F.: Indoor power-line communications channel characterization up to 100 MHz-part II: time–frequency analysis. IEEE Trans. Power Deliv. 23, 1402–1409 (2008)

    Article  Google Scholar 

  9. Tiru, B.; Boruah, P.K.; Medhi, H.: A DSP based channel selection algorithm for adaptive transmission in indoor power line. Indian J. Phys. 84(6), 745–749 (2010)

    Article  Google Scholar 

  10. Tiru, B.; Boruah, P.K.: Design and testing of a suitable transceiver for full duplex communication in indoor power line. IETE J. Res. 56(5), 286–292 (2010)

    Article  Google Scholar 

  11. Tiru, B.: A novel method of computation of transfer function of unknown networks for indoor power line communication: transfer function estimation of power line using transmission matrices. In: Proceedings of IEEE Symposium on Computational Intelligence for Communication Systems and Networks (CIComms). IEEE (2014)

  12. Galli, S.; Banwell, T.C.: A deterministic frequency-domain model for the indoor power line transfer function. IEEE J. Sel. Areas Commun. 24, 1304–1316 (2006)

    Article  Google Scholar 

  13. Galli, S.; Banwell, T.: A novel approach to the modeling of the indoor power line channel-part II: transfer function and its properties. IEEE Trans. Power Deliv. 20, 1869–1878 (2005)

    Article  Google Scholar 

  14. Tonello, A.M.: Wideband impulse modulation and receiver algorithms for multiuser power line communications. EURASIP J. Adv. Signal Process. 1, 096747 (2007)

    Article  Google Scholar 

  15. Tonello, A.M.; Versolatto, F.: Bottom-up statistical PLC channel modeling-part II: inferring the statistics. IEEE Trans. Power Deliv. 25, 2356–2363 (2010)

    Article  Google Scholar 

  16. Tsuzuki, S.; Yamamoto, S.; Takamatsu, T.; Yamada, Y.: Measurement of Japanese indoor power-line channel. In: Proceedings of 5th International Symposium on Power-Line Communication and Its Applications (ISPLC), pp. 79–84 (2001)

  17. Marrocco, G.; Statovci, D.; Trautmann, S.: A PLC broadband channel simulator for indoor communications. ISPLC 2013—2013 IEEE 17th International Symposium on Power Line Communications and Its Applications, pp. 321–326 (2013). https://doi.org/10.1109/ISPLC.2013.6525871

  18. Tan, B.; Thomson, J.: Parameter appendix. http://www.arxiv.org/pdf/1203.3245.pdf. Accessed 4 May 2016

  19. Sutterlin, P.; Downey, W.: Power line communication tutorial-challenges and technologies. https://www.coursehero.com/file/16006749/PLApps-Studywos/. Accessed 16 July 2018

  20. Tiru, B.: An analysis of frequency selectivity of indoor powerline channel for broadband communication. ARPN J. Eng. Appl. Sci. 13(6), 2213–2220 (2018)

    Google Scholar 

  21. Mlynek, P.; Misurec, J.; Koutny, M.: Random channel generator for indoor power line communication. Meas. Sci. Rev. 13, 206–213 (2013). https://doi.org/10.2478/msr-2013-0032

    Article  Google Scholar 

  22. Montoya, L.: Power line communications performance overview of the physical layer of available protocols. http://wenku.baidu.com/view/a30b221252d380eb62946d64. Accessed 4 May 2015

  23. Ahola, J.: Applicability of power-line communications to data transfer of on-line condition monitoring of electrical drives. ISBN 951-764-783-2 (2003)

  24. Hossain, E.; Khan, S.; Ali, A.: Modeling low voltage power line as a data communication channel. Int. J. Electr. Comput. Eng. 2, 1766–1770 (2008)

    Google Scholar 

  25. Canete, F.J.; Cortes, J.A.; Diez, L.; Entrambasaguas, J.T.: A channel model proposal for indoor power line communications. IEEE Commun. Mag. 49, 166–174 (2011)

    Article  Google Scholar 

  26. Tonello, A.M.; Tao, Z.: Bottom-up transfer function generator for broadband PLC statistical channel modeling. In: IEEE International Symposium on Power Line Communications and Its Applications. IEEE (2009)

  27. Tonello, A.M.; Versolatto, F.: Bottom-up statistical PLC channel modeling—part I: random topology model and efficient transfer function computation. IEEE Trans. Power Deliv. 26(2), 891–898 (2011)

    Article  Google Scholar 

  28. Tiru, B.: Characteristics of transfer function of power lines having tapped branches in the propagation path. In: Proceedings of International Conference on Computing, Communication and Security, ICCCS 2015 (2016). https://doi.org/10.1109/CCCS.2015.7374152

  29. Tiru, B.; Baishya, R.; Sarma, U.: An analysis of indoor power line network as a communication medium using ABCD matrices effect of loads on the transfer function of power line. In: Bora, P., Prasanna, S., Sarma, K., Saikia, N. (eds.) Advances in Communication and Computing. Lecture Notes in Electrical Engineering, vol. 347, pp. 171–181. Springer, New Delhi (2015)

    Google Scholar 

  30. Anatory, J.; Member, S.; Theethayi, N.; Kissaka, M.M.; Mvungi, N.H.; Thottappillil, R.; Member, S.: The effects of load impedance, line length, and branches in the BPLC—transmission-lines analysis for indoor voltage channel. IEEE Trans. Power Deliv. 22(4), 2150–2155 (2007)

    Article  Google Scholar 

  31. Zwane, F.; Afullo, T.J.O.: An alternative approach in power line communication channel modelling. Prog. Electromagn. Res. C 47, 85–93 (2014)

    Article  Google Scholar 

  32. Rennane, A.; Konaté, C.; Machmoum, M.: A simplified deterministic approach for accurate modeling of the indoor power line channel. In: Proceedings of Third International Conference on Systems and Networks Communications, pp. 121–126 (2008)

  33. Berger, L.T.; Schwager, A.; Escudero-Garzás, J.J.: Power line communications for smart grid applications. J. Electr. Comput. Eng. 3, 1–17 (2013)

    Google Scholar 

  34. Report on presenting the architecture of PLC system, the electricity network topologies, the operating modes and the equipment over which PLC access system will be installed. IST Integrated Project No 507667. Funded by EC , December 2005

  35. Specification of PLC System Requirements. IST Integrated Project No 507667. Funded by EC , May 2004

  36. Tran-Anh, T.; Auriol, P.; Tran-Quoc, T.: Distribution network modeling for power line communication applications. In: Proceedings of International Symposium on Power Line Communications and Its Applications, pp. 361–365. IEEE (2005)

  37. Papadopoulos, T.A., et al.: Medium voltage network PLC modeling and signal propagation analysis. In: Proceedings of IEEE International Symposium on Power Line Communications and Its Applications. IEEE (2007)

  38. Samimi, M.H.; Ahmadi-Joneidi, I.; Majzoobi, A.; Golshannavaz, S.: Appropriate selection of shunt compensation reactor in parallel transmission lines: a case study. Int. J. Electr. Power Energy Syst. 96, 163–173 (2018)

    Article  Google Scholar 

  39. Figueiredo C.E.C.; Silveira M.S.; Dos Santos G.J.G.; De Jesus N. C.; Quadros L.: Series compensation on medium voltage radial system. In: Proceeding of 23rd International Conference on Electricity Distribution (2015)

  40. Cataliotti, A.; Daidone, A.; Tinè, G.: Power line communication in medium voltage systems: characterization of MV cables. IEEE Trans. Power Deliv. 23(4), 1896–1902 (2008)

    Article  Google Scholar 

  41. Abdelaziz, A.Y.; Ali, E.S.; Elazim, S.A.: Flower pollination algorithm and loss sensitivity factors for optimal sizing and placement of capacitors in radial distribution systems. Int. J. Electr. Power Energy Syst. 78, 207–214 (2016)

    Article  Google Scholar 

  42. Ali, E.S.; Elazim, S.A.; Abdelaziz, A.Y.: Improved harmony algorithm and power loss index for optimal locations and sizing of capacitors in radial distribution systems. Int. J. Electr. Power Energy Syst. 80, 252–263 (2016)

    Article  Google Scholar 

  43. Antoniali, M.; Tonello, A.M.: Measurement and characterization of load impedances in home power line grids. IEEE Trans. Instrum. Meas. 63(3), 548–556 (2014)

    Article  Google Scholar 

  44. Corripio, F.J.C.; Arrabal, J.A.C.; Del Río, L.D.; Muñoz, J.T.E.: Analysis of the cyclic short-term variation of indoor power line channels. IEEE J. Sel. Areas Commun. 24, 1327–1338 (2006). https://doi.org/10.1109/JSAC.2006.874402

    Article  Google Scholar 

  45. Tonello, A.M.; Versolatto, F.; Pittolo, A.: In-home power line communication channel: statistical characterization. IEEE Trans. Commun. 62, 2096–2106 (2014)

    Article  Google Scholar 

  46. Tiru, B.; Boruah, P.K.: Modeling power line channel using ABCD matrices for communication purposes. In: Proceedings of International Conference on Future Electrical Power and Energy Systems Lecture Notes in Information Technology, vol. 9, pp. 374–379 (2012)

  47. Galli, S.; Corporation, P.; Blvd, S.W.; Jose, S.: A simplified model for the indoor power line channel. In: Proceedings of IEEE International Symposium on Power Line Communications and Its Applications, pp. 13–19 (2009)

  48. Tlich, M.; Zeddam, A.; Moulin, F.; Gauthier, F.; Avril, G.: A broadband powerline channel generator. In: IEEE International Symposium on Power Line Communications and Its Applications, ISPLC’07, pp. 505–510 (2007). https://doi.org/10.1109/ISPLC.2007.371176

  49. Rasool, B.; Rasool, A.; Khan, I.: Impedance characterization of power line communication networks. Arab. J. Sci. Eng. 39(8), 6255–6267 (2014)

    Article  Google Scholar 

  50. Mosalaosi, M.; Afullo, T.J.O.: A deterministic channel model for multi-access broadband powerline communication. In: IEEE AFRICON Conference 2015, November (2015)

  51. Berger, L.T.; Moreno-Rodríguez, G.: Power line communication channel modelling through concatenated IIR-filter elements. J. Commun. 4, 41–51 (2009)

    Article  Google Scholar 

  52. Anatory, J.; Kissaka, M.M.; Mvungi, N.H.: Channel model for broadband power-line communication. IEEE Trans. Power Deliv. 22, 135–141 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banty Tiru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baishya, R., Tiru, B. & Sarma, U. An Alternate Method for Prediction and Analysis of Notch Characteristics in Indoor Power Lines Under Varied Channel Conditions. Arab J Sci Eng 45, 1531–1552 (2020). https://doi.org/10.1007/s13369-019-04052-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04052-w

Keywords

Navigation