Skip to main content

Advertisement

Log in

Probabilistic Approach to Determine Penetration of Hybrid Renewable DGs in Distribution Network Based on Voltage Stability Index

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An increase in the applications of renewable-based energy resources in the radial distribution network has led to many uncertainties in the existing system which affects the stable operation of the power systems. The issues regarding the generation uncertainty associated with wind energy and photovoltaic (PV) systems along with load demand uncertainties are considered in this research for the evaluation of the maximum penetration level of renewable energy resources. The nodes which are less voltage stable are considered as the most suitable locations for distributed generations (DGs) placement from voltage stability viewpoint. For identification of DGs locations, a voltage stability index–continuous power flow-based algorithm has been proposed. To analyze the effect of large penetration level of wind and PV on voltage profile, power losses and system voltage stability of the radial distribution network, a probabilistic-based approach has been adopted. It is observed from simulation results that the penetration level limit depends upon the type of DGs connected to the radial distribution network. Usually the integration of DGs reduces the power losses in the network; however, as penetration level increases, the power losses begin to increase. The detailed mathematical model of wind and PV sources has been utilized. The Hong’s 2m + 1 point estimation method combined with Cornish–Fisher expansion has been adopted in this paper for probabilistic studies. The effectiveness of the proposed method has been validated through IEEE 33 and 69 node radial distribution test network for various scenarios. The results obtained are verified and compared with benchmark Monte Carlo simulation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wang, H.; Xu, X.; Yan, Z.; Yang, Z.; Feng, N.; Cui, Y.: Probabilistic static voltage stability analysis considering the correlation of wind power. In: 2016 IEEE International Conference on Probabilistic Methods Applied to Power Systems PMAPS, pp. 1–6 (2016)

  2. Rubinstein, R.Y.: Simulation and the Monte Carlo Method. Wiley, New York (1991)

    Google Scholar 

  3. Su, C.L.: Probabilistic load flow computation using point estimate method. IEEE Trans. Power Syst. 20(4), 1843–1851 (2005)

    Article  Google Scholar 

  4. Morales, J.M.; Perez-Ruiz, J.: Point estimate schemes to solve the probabilistic power flow. IEEE Trans. Power Syst. 22(4), 1594–1601 (2007)

    Article  Google Scholar 

  5. Schellenberg, A.; Rosehart, W.; Aguado, J.: Cumulant probabilistic optimal power flow (P-OPF) with Gaussian and Gamma distributions. IEEE Trans. Power Syst. 20(2), 773–781 (2005)

    Article  Google Scholar 

  6. Zhang, P.; Lee, S.T.: Probabilistic load flow computation using the method of combined Cumulants and Gram Charlier expansion. IEEE Trans. Power Syst. 19(1), 676–682 (2004)

    Article  Google Scholar 

  7. Usaola, J.: Probabilistic load flow with wind production uncertainty using Cumulants and Cornish–Fisher expenstion. Electr. Power Energy Syst. 31(9), 474–481 (2009)

    Article  Google Scholar 

  8. Atwa, Y.M.; El-Saadany, E.F.: Optimal allocation of ESS in distribution system with a high penetration of wind energy. IEEE Trans. Power Syst. 25(4), 1815–1822 (2010)

    Article  Google Scholar 

  9. Ayres, H.M.; Freitas, W.; De Almeida, M.C.; Da Silva, L.C.P.: Method for determining the maximum allowable penetration level of distributed generation without steady state voltage violations. IET Gener. Transm. Distrib. 4(4), 495–508 (2010)

    Article  Google Scholar 

  10. Hung, D.Q.; Mithulananthan, N.; Lee, K.Y.: Determining PV penetration for distribution system with time varying load models. IEEE Trans. Power Syst. 29(6), 3048–3057 (2014)

    Article  Google Scholar 

  11. Hoke, A.; Butler, R.; Hambrick, L.; Kroposki, B.: Steady state analysis of maximum photovoltaic penetration levels on typical distribution feeders. IEEE Trans. Sustain. Energy 4(2), 350–357 (2013)

    Article  Google Scholar 

  12. Verschueren, T.; Mets, K.; Meersman, B.; Strobbe, M.; Develder, C.; Vandevelde, L.: Assessment and mitigation of voltage violations by solar panels in a residential distribution grid. In: International Conference on Smart Grid Communications (SmartGridComm), IEEE, pp. 540–545 (2011)

  13. Khairy, H.; El-Shimy, M.; Hashem, G.M.: Determining the maximum penetration level of solar-PV generator using eigenvalue analysis. In: 19th International Middle East Power Systems Conference (MEPCON), IEEE, pp. 293–299 (2017)

  14. Aziz, T.; Ketjoy, N.: PV penetration limits in low voltage networks and voltage variations. IEEE Access. 5, 16784–16792 (2017)

    Article  Google Scholar 

  15. Procopiou, A.T.; Ochoa, L.F.: Voltage control in PV rich LV networks without remote monitoring. IEEE Trans. Power Syst. 32(2), 1224–1236 (2017)

    Article  Google Scholar 

  16. Lamberti, F.; Calderaro, V.; Galdi, V.; Piccolo, A.; Graditi, G.: Impact analysis of distributed PV and energy storage systems in unbalanced LV networks. In: IEEE Eindhoven Power Tech, Eindhoven, Netherlands, pp. 1–6 (2015)

  17. Alam, M.J.; Muttaqi, K.M.; Sutanto D.: Distributed energy storage for mitigation of voltage-rise impact caused by rooftop solar PV. In: Power and Energy Society General Meeting, IEEE, pp. 1–8 (2012)

  18. Liew, S.N.; Strbac, G.: Maximum penetration of wind generation in existing distribution network. IEEE Proc. Gener. Trasm. Distrib. 149(3), 256–262 (2002)

    Article  Google Scholar 

  19. Kolenc, M.; Papic, I.; Blazic, B.: Assessment of maximum distributed generation penetration levels in low voltage network using a probabilistic approach. Int. J. Electr. Power Energy Syst. 64, 505–515 (2015)

    Article  Google Scholar 

  20. Zio, E.; Delfanti, M.; Giorgi, L.; Olivieri, V.; Sansavini, G.: Monte Carlo simulation based probabilistic assessment of DG penetration in medium voltage distribution network. Int. J. Electr. Power Energy Syst. 64, 852–860 (2015)

    Article  Google Scholar 

  21. Almeida, A.B.; Valenca de Lorenci, E.; Leme, R.C.; Zambroni De Souza, A.C.; Lima Lopes, B.I.; Lo, K.: Probabilistic voltage stability assessment considering renewable sources with the help of PV and QV curves. IET Renew. Power Gener. 7(5), 521–530 (2013)

    Article  Google Scholar 

  22. Xiuhong, Z.; Kewen, W.; Ming, L.; Wanhui, Y.; Tse, C.T.: Two extended approaches for voltage stability studies of quadratic and probabilistic continuation load flow. In: International Conference on Power System Technology, pp. 1705–1709 (2002)

  23. Haesen, E.; Bastiaensen, C.; Driesen, J.; Belmans, R.: A probabilistic formulation of load margins in power systems with stochastic generation. IEEE Trans. Power Syst. 24(2), 951–958 (2009)

    Article  Google Scholar 

  24. Liu, K.; Sheng, W.; Hu, L.; Liu, Y.; Meng, X.; Jia, D.: Simplified probabilistic voltage stability evaluation considering variable renewable distributed generation in distribution systems. IET Gener. Transm. Distrib. 9(12), 1464–1473 (2015)

    Article  Google Scholar 

  25. Kataoka, Y.: A probabilistic nodal loading model and worst case solutions for electric power system voltage stability assessment. IEEE Trans. Power Syst. 18(4), 1507–1514 (2003)

    Article  Google Scholar 

  26. Hatziargyriou, N.D.; Karakatsanis, T.S.: Probabilistic load flow for assessment of voltage instability. IEE Proc. Gener. Transm. Distrib. 145(2), 196–202 (1998)

    Article  Google Scholar 

  27. Zhang, J.F.; Tse, C.T.; Wang, W.; Chung, C.Y.: Voltage stability analysis based on probabilistic power flow and maximum entropy. IET Gener. Transm. Distrib. 4(4), 530–537 (2010)

    Article  Google Scholar 

  28. Ran, X.; Miao, S.: Probabilistic evaluation for static voltage stability for unbalanced three phase distribution system. IET Gener. Transm. Distrib. 9(14), 2050–2059 (2015)

    Article  Google Scholar 

  29. Ruiz Rodriguez, F.J.; Hernandez, J.C.; Jurado, F.: Probabilistic load flow for photovoltaic distributed generation using the Cornish–Fisher expansion. Electr. Power Syst. Res. 89, 129–138 (2012)

    Article  Google Scholar 

  30. Delgado, C.; Dominguez Navarro, J.A.: Point estimate method for probabilistic load flow of an unbalanced power distribution system with correlated wind and solar sources. Int. J. Electr. Power Energy Syst. 61, 267–278 (2014)

    Article  Google Scholar 

  31. Atwa, Y.M.; El-Saadany, E.F.; Salmu, M.M.A.; Seethapathy, R.: Optimal renewable resource mix for distribution system energy loss minimization. IEEE Trans. Power Syst. 25(1), 360–370 (2010)

    Article  Google Scholar 

  32. Karaki, S.H.; Chedid, R.B.; Ramadan, R.: Probabilistic performance assessment of autonomous solar-wind energy conversion systems. IEEE Trans. Energy Conver. 14, 766–772 (1999)

    Article  Google Scholar 

  33. Tian, S.; Wang, H.; Xie, X.: Probabilistic load flow analysis considering the correlation for microgrid with wind and photovoltaic system In: 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 2003–2008 (2015)

  34. Fan, M.; Vittal, V.; Heydt, G.T.; Ayyanar, R.: Probabilistic power flow studies for transmission systems with photovoltaic generation using cumlants. IEEE Trans. Power Syst. 27, 2251–2261 (2012)

    Article  Google Scholar 

  35. Modarresi, J.; Gholipour, E.; Khodabakhshian, A.: A comprehensive review of the voltage stability indices. Renew. Sustain. Energy Rev. 63, 1–12 (2016)

    Article  Google Scholar 

  36. Chakravorty, M.; Das, D.: Voltage stability analysis of radial distribution networks. Int. J. Electr. Power Energy Syst. 23, 129–135 (2000)

    Article  Google Scholar 

  37. Das, D.; Kothari, D.P.; Kalam, A.: Simple and efficient method for load flow solution of radial distribution netowork. Int. J. Electr. Power Energy Syst. 17(5), 335–346 (1995)

    Article  Google Scholar 

  38. Mistry, K.D.; Roy, R.: Enhancement of loading capacity of distribution system through distributed generator placement considering techno-economic benefits with load growth. Int. J. Electr. Power Energy Syst. 54, 505–515 (2014)

    Article  Google Scholar 

  39. Baran, M.E.; Wu, F.F.: Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 4(2), 1401–1407 (1989)

    Article  Google Scholar 

  40. Bett, P.E.; Thornton, H.E.: The climatological relationships between wind and solar energy supply in Britain. Renew. Energy 87, 96–110 (2016)

    Article  Google Scholar 

  41. Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Akinola, O.O.: Impact of distributed generators on the power loss and voltage profile of sub transmission network. J. Electr. Syst. Inf. Technol. 3, 94–107 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahiraj Singh Rawat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, M.S., Vadhera, S. Probabilistic Approach to Determine Penetration of Hybrid Renewable DGs in Distribution Network Based on Voltage Stability Index. Arab J Sci Eng 45, 1473–1498 (2020). https://doi.org/10.1007/s13369-019-04023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04023-1

Keywords

Navigation