Skip to main content

Flow Analysis of Multilayer Gravity-Driven Sisko Fluid over a Flat Inclined Plane

Abstract

Gravity-driven thin film flow of two immiscible non-Newtonian Sisko fluids over a flat inclined plane is investigated. The equation, describing the flow, is nonlinear in nature and does not have a closed form of solution in general. In this study, the nonlinear governing differential equations are solved analytically by employing homotopy perturbation method (HPM). Besides, an exact solution for a special case of the non-Newtonian index is also obtained. The results of the solution based on HPM are compared with the exact solution for the special case, and it shows close agreement between the two results. This demonstrates the efficacy of HPM for solving nonlinear problems. The expression for the velocity is obtained, and the effects of various parameters like Sisko fluid parameters, density ratio, and viscosity ratio are also analyzed and discussed. The results indicate that with increase in the density ratio, it causes a significant increase in the velocity of fluids in both the layers and the velocities in both the layers are decreasing significantly with an increase in the Sisko fluid parameters. This study has got wider application in various industrial activities such as protective and decorative coating, painting.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bontozoglou, V.; Papapolymerou, G.: Laminar film down a wavy incline. Int. J. Multiph. Flow 23, 69–79 (1997)

    Article  MATH  Google Scholar 

  2. Kang, F.; Chen, K.P.: Gravity-driven two layer flow down a slightly wavy periodic incline at low Reynolds number. Int. J. Multiph. Flow 21, 501–513 (1995)

    Article  MATH  Google Scholar 

  3. Pozrikidis, C.: The flow of a liquid film along a periodic wall. J. Fluid Mech. 188, 275–300 (1988)

    Article  MATH  Google Scholar 

  4. Amaouche, M.; Djema, A.; Bourdache, L.: A modified Shkadov’s model for thin film flow of a power law fluid over an inclined surface. Comptes Rendus Mec. 337, 48–52 (2009)

    Article  MATH  Google Scholar 

  5. Kheyfets, V.O.; Kieweg, S.L.: Gravity-driven thin film flow of an ellis fluid. J. Non-Newton. Fluid Mech. 202, 88–98 (2013)

    Article  Google Scholar 

  6. Alam, M.K.; Rahim, M.T.; Avital, E.J.; Islam, S.; Siddiqui, A.M.; Williams, J.J.R.: Solution of the steady thin film flow of non-Newtonian fluid on vertical cylinder using Adomian Decomposition Method. J. Frankl. Inst. 350, 818–839 (2013)

    Article  MATH  Google Scholar 

  7. Singla, R.K.; Das, R.: Adomian decomposition method for a stepped fin with all temperature dependent modes of heat transfer. Int. J. Heat Mass Transf. 82, 447–459 (2015)

    Article  Google Scholar 

  8. Siddiqui, A.M.; Mahmood, R.; Ghori, Q.K.: Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane. Chaos Solitons Fractals 35, 140–147 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hayat, T.; Ellahi, R.; Mahmood, F.M.: Exact solutions for thin film flow of a third grade fluid down an inclined plane. Chaos Solitons Fractals 38, 1336–1341 (2008)

    Article  MATH  Google Scholar 

  10. Kumaran, V.; Tamizharasi, R.; Merkin, J.H.; Vajravelu, K.: On thin film flow of a third-grade fluid down an inclined plane. Arch. Appl. Mech. 82, 261–266 (2012)

    Article  MATH  Google Scholar 

  11. Sisko, A.W.: The flow of lubricating greases. Ind. Eng. Chem. Res. 50, 178–179 (1958)

    Article  Google Scholar 

  12. Khan, M.I.; Hayat, T.; Qayyum, S.; Khan, M.I.; Alsaedi, A.: Entropy generation (irreversibility) associated with flow and heat transport mechanism in Sisko nanomaterial. Phys. Lett. A 382, 2343–2353 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shah, R.A.; Gaskell, P.; Veremieiev, S.: Free surface thin film flow of a Sisko’s fluid over a surface topography. J. Appl. Fluid Mech. 10, 307–317 (2017)

    Article  Google Scholar 

  14. Khan, M.; Shahzad, A.: On boundary layer flow of a Sisko fluid over a stretching sheet. Quaest. Math. 36, 137–151 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khan, M.; Malik, R.; Munir, A.: Mixed convective heat transfer to a Sisko fluid over a radially stretching sheet in presence of convective boundary conditions. AIP Adv. 5, 087178 (2015)

    Article  Google Scholar 

  16. Nadeem, S.; Akbar, N.S.; Vajravelu, K.: Peristaltic flow of a Sisko fluid in an endoscope: analytical and numerical solutions. Int. J. Comput. Math. 88, 1013–1023 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Haghighi, A.R.; Asadi Chalak, S.: Mathematical modeling of Sisko fluid flow through a stenosed artery. Int. J. Ind. Math. 9, 75–82 (2017)

    Google Scholar 

  18. Siddiqui, A.M.; Ahmed, M.; Ghori, Q.K.: Thin film flow of non-Newtonian fluids on a moving belt. Chaos, Solitons Fractals 33, 1006–1016 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hajmohammadai, M.R.; Nourazar, S.S.: On the insertion of a thin gas layer in micro cylindrical Couette flows involving power-law liquids. Int. J. Heat Mass Transf. 75, 97–108 (2014)

    Article  Google Scholar 

  20. Cuce, E.; Cuce, P.M.: A successful application of homotopy perturbation method for efficiency and effectiveness assessment of longitudinal porous fins. Energy Convers. Manag. 93, 92–99 (2015)

    Article  Google Scholar 

  21. Torabi, M.; Zhang, Q.B.: Analytical solution for evaluating the thermal performance and efficiency of convective-radiative straight fins with various profiles and considering all non-linearities. Energy Convers. Manag. 66, 199–210 (2013)

    Article  Google Scholar 

  22. He, J.H.: A new approach to non-linear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2, 230–235 (1997)

    Article  Google Scholar 

  23. He, J.H.: A coupling method of homotopy perturbation technique and a perturbation technique for non-linear problem. Int. J. Nonlinear Mech. 135, 73–79 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Chaudhuri.

Appendix A

Appendix A

Equation (12) is solved by substituting

$$ \frac{{{\text{d}}u_{1} }}{{{\text{d}}y}} = z_{1} $$
(A.1)

which gives:

$$ \frac{{{\text{d}}z_{1} }}{{{\text{d}}y}} + 2b_{1} z_{1} \frac{{{\text{d}}z_{1} }}{{{\text{d}}y}} + 1 = 0 $$
(A.2)
$$ \Rightarrow \frac{{{\text{d}}z_{1} }}{{{\text{d}}y}}(1 + 2b_{1} z_{1} ) = - {\text{d}}y $$
(A.3)

Integrating Eq. (A.3) and solving, we get: \( z_{1} = \frac{{ - 1 + \sqrt {1 - 4b_{1} (y - c_{1} )} }}{{2b_{1} }} \) (taking the +ve value for \( \frac{{{\text{d}}u_{1} }}{{{\text{d}}y}} \), as \( u_{1} \) increases with y)

$$ = > \frac{{{\text{d}}u_{1} }}{{{\text{d}}y}} = \frac{{ - 1 + \sqrt {1 - 4b_{1} (y - c_{1} )} }}{{2b_{1} }} $$
(A.4)
$$ = > u_{1} = \frac{0.5}{{b_{1} }}\left[ { - y - \frac{1}{{6b_{1} }}\left\{ {1 - 4b_{1} (y - c_{1} )} \right\}^{3/2} } \right] + c_{2} $$
(A.5)

Similar procedure is used to solve \( u_{2} \) from Eq. (13) which gives the solution as follows:

$$ u_{2} = \frac{0.5}{{b_{2} }}\left[ { - y - \frac{1}{{6b_{2} \left( {\frac{{k_{1} }}{{k_{2} }}} \right)}}\left\{ {1 - 4b_{2} \left( {\frac{{k_{1} }}{{k_{2} }}y - c_{1} } \right)} \right\}^{3/2} } \right] + c_{4} $$
(A.6)

Now, using the boundary conditions given by Eqs. (17.1, 17.2), we get the following equations:

$$ \frac{0.5}{{b_{1} }}\left[ { - \frac{1}{{6b_{1} }}\left\{ {1 + 4b_{1} c_{1} } \right\}^{3/2} } \right] + c_{2} = 0 $$
(A.7)
$$ \frac{0.5}{{b_{1} }}\left[ { - r - \frac{1}{{6b_{1} }}\left\{ {1 - 4b_{1} (r - c_{1} )} \right\}^{3/2} } \right] + c_{2} = \frac{0.5}{{b_{2} }}\left[ { - r - \frac{1}{{6b_{2} \left( {\frac{{k_{1} }}{{k_{2} }}} \right)}}\left\{ {1 - 4b_{2} \left( {\frac{{k_{1} }}{{k_{2} }}r - c_{3} } \right)} \right\}^{3/2} } \right] + c_{4} $$
(A.8)
$$ \begin{aligned} & \frac{0.5}{{b_{1} }}\left[ { - 1 + \sqrt {1 - 4b_{1} (r - c_{1} )} } \right] \\ &\quad + \frac{(0.5)}{{b_{1}^{{}} }}^{2} \left[ { - 1 + \sqrt {1 - 4b_{1}^{{}} (r - c_{1} )} } \right]^{2} \\ & \quad = \frac{0.5}{{b_{2}^{{}} }}k_{2} \left[ { - 1 + \sqrt {1 - 4b_{2}^{{}} \left( {\frac{{k_{1} }}{{k_{2} }}r - c_{3} } \right)} } \right] \\ &\quad + \frac{{(0.5)^{2} }}{{(b_{2}^{{}} )^{2} }}b_{1}^{{}} k_{3} \left[ { - 1 + \sqrt {1 - 4b_{2}^{{}} \left( {\frac{{k_{1} }}{{k_{2} }}r - c_{3} } \right)} } \right]^{2} \\ \end{aligned} $$
(A.9)
$$ - 1 + \sqrt {1 - 4b_{2}^{{}} \left( {\frac{{k_{1} }}{{k_{2} }} - c_{3} } \right)} = 0 $$
(A.10)

\( c_{3} = \frac{{k_{1} }}{{k_{2} }} \). These four equations are solved for c1, c2, c3, and c4, and velocity in both layers is found as follows:

$$ c_{3} = \frac{{k_{1} }}{{k_{2} }} $$
(A.11)
$$ c_{1} = r - \frac{1}{{4b_{1}^{{}} }}\left[ {1 - \left\{ {0.5 + \sqrt {0.25 + b_{1} \left\{ \begin{aligned} 0.5k_{2} \frac{{b_{1}^{{}} }}{{b_{2}^{{}} }}\left( { - 1 + \sqrt {1 - 4b_{2}^{{}} \left( {\frac{{k_{1} }}{{k_{2} }}} \right)\left( {r - 1} \right)} } \right) \hfill \\ + 0.25b_{1}^{{}} k_{3} \left( { - 1 + \sqrt {1 - 4b_{2}^{{}} \left( {\frac{{k_{1} }}{{k_{2} }}} \right)\left( {r - 1} \right)} } \right)^{2} \hfill \\ \end{aligned} \right\}} } \right\}} \right] $$
(A.12)
$$ c_{2} = \frac{ - 0.5}{{6b_{1}^{{}} }}\left\{ {1 + 4b_{1}^{{}} c_{1} } \right\} $$
(A.13)
$$ c_{4} = \frac{0.5}{{b_{1}^{{}} }}\left[ { - r - \frac{1}{{6b_{1}^{{}} }}\left\{ {1 - 4b_{1}^{{}} (r - c_{1} )} \right\}^{3/2} } \right] + c_{2} - \frac{0.5}{{b_{2}^{{}} }}\left[ { - r - \frac{1}{{6b_{2}^{{}} \left( {\frac{{k_{1} }}{{k_{2} }}} \right)}}\left\{ {1 - 4b_{2}^{{}} \left( {\frac{{k_{1} }}{{k_{2} }}r - c_{3} } \right)} \right\}^{3/2} } \right] $$
(A.14)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhuri, S., Chakraborty, P., Das, B. et al. Flow Analysis of Multilayer Gravity-Driven Sisko Fluid over a Flat Inclined Plane. Arab J Sci Eng 44, 8081–8093 (2019). https://doi.org/10.1007/s13369-019-03995-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03995-4

Keywords