Skip to main content

Advertisement

Log in

Experimental and Simulation Studies on Waste Vegetable Peels as Bio-composite Fillers for Light Duty Applications

  • Research Article -Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

During the last few years, green composites are gaining prominence as alternative materials for aerospace, automotive and construction sectors. Green composites are renewable in nature, economical and biodegradable. The present work mainly focuses on the development of novel green composites to meet the ever-increasing demands of industry for structural applications. Green composites were developed using different fillers obtained from outermost peels of onion, potato and carrot, respectively. The percentage of fillers was varied from 10 to 30% in steps of 10% in the epoxy holding matrix. Accordingly, for each composition, six composite specimens were fabricated and were analyzed for mechanical properties and microstructure studies of the samples were also carried out using SEM. Onion-embedded epoxy samples showed maximum tensile strength (20.8 MPa) and hardness (50.75 HRB) when compared to other fillers. Further, the study revealed that mechanical properties were found to be maximum for 10% volume fraction of all fillers used in the polymer holding matrix. SEM images showed uniform distribution of the fillers in the holding matrix. Finally, the experimental results were compared with FEA and analytical calculation was found in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Martin, H., Jose, A., Center for Sustainable Systems, University of Michigan: Carbon Footprint Factsheet. Pub. No. CSS09-05. Carbon footprint, Environment Science. www.domain-b.com/environment/20090403_carbon_footprint.html (2016)

  2. Madhuri, B., Prashant, S.K., Aravin, P.P., Lavate, S.S.: Review of recent trends and developments in bio-composites. April 2014, Issue 1. Cotton Bangladesh (2005)

  3. Herd, R., Koen, V., van den Noord, P.: China’s emergence as a market economy: achievements and challenges. In: OECD Contribution to the China Development Forum 20–21, Beijing (March 2011)

  4. Doll, J.E., Baranski, M.: Greenhouse gas basics. In: Climate Change and Agriculture Fact Sheet Series E3148 (April 2011)

  5. Pervaiz, M.; Sain, M.: Carbon storage potential in natural fiber composites. J. Resour. Conserv. Recycl. 39(4), 325–340 (2003)

    Article  Google Scholar 

  6. McDonald, J., Quarshie, R., Carruthers, J.: BIOCOMP innovation review. In: BIOCOMP Project Internal Report (February 2006)

  7. Fowler, P.A.; Hughes, J.M.; Elias, R.M.: Review Biocomposites: technology, environmental credentials and market forces. J. Sci. Food Agric. 86, 1781–1789 (2006)

    Article  Google Scholar 

  8. Fowler, P.A., Hughes, J.M., Elias, R.M.: Bio-composites from crop fibres and resins Bio-Composites Centre. In: IGER Innovation. University of Wales, Bangor www.bc.bangor.ac.uk (2007)

  9. Joshi, S.V.; Lawrence, T.D.; Mohanty, A.; Arora, S.: Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 35, 371–376 (2004)

    Article  Google Scholar 

  10. Indian Textile Journal: http://www.indiantextilejournal.com/Content/default.asp (2014). Accessed 10 Mar 2014

  11. Foulk, J.D., Akin, D.E., Dodd, R.B.: New low cost flax fibers for composites. In: SAE Technical Paper Number 2000-01-1133, SAE 2000 World Congress, Detroit, March 6–9, 2000

  12. Pereira, P.H.F.; de Rosa, M.F.; Cioffi, M.O.H.; Benini, K.C.C.; Milanese, A.C.; Voorwald, H.J.C.; Mulinari, D.R.: Vegetal fibers in polymeric composites: a review. Polímeros 25(1), 9–22 (2015)

    Article  Google Scholar 

  13. Beshay, A.D.; Kokta, B.V.; Daneault, C.: Use of wood fibers in thermoplastic composites II: polyethylene. J. Polym. Compos. 6(4), 261–271 (1985)

    Article  Google Scholar 

  14. Nagarajan, V.; Mohanty, A.; Mansuri, M.: Sustainable green composites: value addition to agricultural residues and perennial grasses. ACS Sustain. Chem. Eng. 1(3), 325–333 (2013)

    Article  Google Scholar 

  15. Lau, K.; Ho, M.; Au-Yeung, C.; Cheung, H.: Biocomposites: their multifunctionality. Int. J. Smart Nano Mater. 1(1), 13–27 (2010)

    Article  Google Scholar 

  16. Santos, P.A.; Spinacé, M.A.S.; Fermoselli, K.K.G.; De Paoli, M.A.: A polyamide-6/vegetable fiber composite prepared by extrusion and injection molding. Compos. Part A Appl. Sci. Manuf. 38(12), 2404–2411 (2007)

    Article  Google Scholar 

  17. Nevel, T.P.; Zeronian, S.H.: Cellulose Chemistry and Its Applications. Wiley, New York (1985)

    Google Scholar 

  18. Bledzki, A.K.; Franciszczaka, P.; Osman, Z.; Elbadawi, M.: Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Ind. Crops Products 70, 91–99 (2015)

    Article  Google Scholar 

  19. Tye, Y.Y.; Lee, K.T.; Abdullah, W.N.W.; Leh, C.P.: Potential of Ceiba pentandra Gaertn (kapok fiber) as a resource for second generation bioethanol: effect of various simple pre-treatment methods on sugar production. Bioresour. Technol. 116, 536–539 (2012)

    Article  Google Scholar 

  20. Chuai, C.; Almdal, K.; Poulsen, L.; Plackett, D.: Conifer fibers as reinforcing materials for polypropylene-based composites. J. Appl. Polym. Sci. 80, 2833–2841 (2001)

    Article  Google Scholar 

  21. MohammadMirmehandi, Seyed.; Zeinaly, Farhad.; Dabbagh, Fatemeh.: Date palm wood flour as filler of linear low-density polyethylene. Compos. Part B Eng. 56, 137–141 (2014). https://doi.org/10.1016/j.compositesb.2013.08.008

    Article  Google Scholar 

  22. Ramesh, M.; Atreya, T.S.A.; Aswin, U.S.; Eashwar, H.; Deepa, C.: Processing and mechanical property evaluation of banana fiber reinforced polymer composites. J. Proc. Eng. 97, 563–572 (2014)

    Article  Google Scholar 

  23. Badrinath, R.; Senthivelan, T.: Comparative investigation on mechanical properties of banana and sisal reinforced polymer based composites. J. Mater. Sci. 5, 2263–2272 (2014)

    Google Scholar 

  24. Campbell, M.M.; Sederoff, R.R.: Variation in lignin content and composition’ mechanisms of control and implications for the genetic improvement of plants. Plant Physiol. 110, 3–13 (1996)

    Article  Google Scholar 

  25. Wan, Y.Z.; Wang, Y.L.; Li, Q.Y.; Dong, X.H.: Influence of surface treatment of carbon fibers on interfacial adhesion strength and mechanical properties of PLA-based composites. J. Appl. Polym. Sci. 80, 367–376 (2001)

    Article  Google Scholar 

  26. Sanadi, A.R.; Caulfield, D.F.; Jacobsen, R.E.: Agro-fiber thermoplastic composites. In: Rowell, R.M., Young, R.A., Rowell, J.K. (eds.) Paper and Composites from Agro-Based Resources, Chapter 12. CRC Press, New York (1997)

    Google Scholar 

  27. Vijaykumar, S.; Nilavarasan, T.; Usharani, R.; Karunamoorthy, L.: Mechanical and microstructure characterization of coconut spathe fibers and kenaf bast fibers reinforced epoxy polymer matrix composites. J. Mater. Sci. 5, 2330–2337 (2014)

    Google Scholar 

  28. Patil, A.Y.; Umbrajkar, N.H.; Basavaraj, G.D.; Gireesha, R.C.; Kodancha, K.G.: Influence of bio-degradable natural fiber embedded in polymer matrix. Mater Today Proc 5(2), 7532–7540 (2018)

    Article  Google Scholar 

  29. Silva, F.A.; Chawla, N.; Filho, R.D.T.: Tensile behavior of high performance natural (sisal) fibers. Compos. Sci. Technol. 68, 915–924 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Banapurmath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, A.Y., Banapurmath, N.R., Yaradoddi, J.S. et al. Experimental and Simulation Studies on Waste Vegetable Peels as Bio-composite Fillers for Light Duty Applications. Arab J Sci Eng 44, 7895–7907 (2019). https://doi.org/10.1007/s13369-019-03951-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03951-2

Keywords

Navigation