Skip to main content
Log in

Deep Neural Networks with Extreme Learning Machine for Seismic Data Compression

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Advances on seismic survey techniques require a large number of geophones. This leads to an exponential growth in the size of data and prohibitive demands on storage and network communication resources. Therefore, it is desirable to compress the seismic data to the minimum possible, without losing important information. In this paper, a stacked auto-encoder extreme learning machine (AE-ELM) for seismic data compression is proposed. First, a deep asymmetric auto-encoder is constructed, in which nonlinear activation functions are used in the encoder hidden layers and linear activation functions are utilized in the decoder layers. Second, the encoder hidden layers are connected in a cascade way, so that outputs of a hidden layer are considered as the inputs to the succeeding hidden layer. Third, the optimal weights of connections between the layers of the decoder are solved analytically. Lastly, the AE-ELMs are stacked to create the complete encoder/decoder. The extreme learning machine (ELM) is selected due to its analytical calculation of weights efficient training that is suitable for practical implementation. In this neural network, data compression is achieved by transforming the original data through the encoder layers where the size of outputs from the last encoder hidden layer is smaller than the original data size. The proposed method exhibits a comparable reconstruction quality on a real dataset but with a much shorter training duration than other deep neural networks methods. This neural network with more than 8000 hidden units achieved \( 1.28 \times 10^{ - 3} \) of normalized mean-squared error for 10:1 of compression ratio with only 8.23 s of training time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang, Y. Large-scale seismic data compression: application to full waveform inversion and extended image volume, Doctoral dissertation, University of British Columbia, April, 2018

  2. Roberts, L.: Beyond Moore’s law: internet growth trends. Computer 33(1), 117–119 (2000)

    Article  Google Scholar 

  3. Kuhn, M.; Kunkel, J.; Ludwig, T.: Data compression for climate data. Supercomput. Front. Innov. 3(1), 75–94 (2016)

    Google Scholar 

  4. Rosten, T.; Marthinussen, V. A.; Ramstad,T. A.; Perkis, A.: Filter bank optimization for high-dimensional compression of pre-stack seismic data. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, March 1999, 1999

  5. Wood, L.C.: Seismic data compression methods. Geophysics 39, 499–525 (1974)

    Article  Google Scholar 

  6. Spanias, A.S.; Jonsson, S.B.; Stearns, S.D.: Transform methods for seismic data compression. IEEE Trans. Geosci. Remote Sens. 29, 407–416 (1991)

    Article  Google Scholar 

  7. Duval, L. C.; Nguyen, T. Q.: Seismic data compression: a comparative study between GenLOT and wavelet compression. In: Proceedings of SPIE- the international society for optical engineering, October 1999, 1999

  8. Wang, Y.; Wu, R.-S.: Seismic data compression by an adaptive local cosine/sine transform and its effects on migration. Geophys. Prospect. 48, 1009–1031 (2000)

    Article  Google Scholar 

  9. Geng, Y.; Wu R. S.; Gao, J.: Dreamlet transform applied to seismic data compression and its effects on migration. In: SEG Annual Meeting January, Houston, 2009

  10. Wang, S.; Li, J.; Chiu, S.; Anno, P.: Seismic data compression and regularization via wave packets. In In SEG technical program expanded abstracts October, 2010

  11. Liu, B.; Mohandes, M.; Nuha, H.; Mohamed, D.; Faramarz, F.: A distributed principal component analysis compression for smart seismic acquisition networks. IEEE Trans. Geosci. Remote Sens. 56(6), 3020–3029 (2018)

    Article  Google Scholar 

  12. Liu, B.; Nuha, H.; Mohandes, M.; Deriche, M.; Fekri, F.: Disributed principal component analysis for data compression of sequential seismic sensor arrays. In: SEG technical program expanded abstracts October 2016, 2016

  13. Said, A.; Mohamed, A.; Elfouly, T.; Harras, K.; Wang, Z.: Multimodal deep learning approach for joint EEG-EMG data compression and classification. In: Wireless Communications and Networking Conference (WCNC) May, 2017

  14. Al-Said, M.T.M.; Abdellatif, A.; Mohamed, A.; Elfouly, T.; Harras, K.; O’Connor, M.: A deep learning approach for vital signs compression and energy efficient delivery in mHealth systems. IEEE Access 6, 33727–33739 (2018)

    Article  Google Scholar 

  15. Sriraam, N.; Eswaran, C.: Performance evaluation of neural network and linear predictors for near-lossless compression of EEG signals. IEEE Trans. Inf. Technol. Biomed. 12(1), 87–93 (2008)

    Article  Google Scholar 

  16. Tan, C.; Eswaran, C.: Using autoencoders for mammogram compression. J. Med. Syst. 35(1), 49–58 (2011)

    Article  Google Scholar 

  17. Srivastava, N.; Salakhutdinov, R. R.: Multimodal learning with deep boltzmann machine. In: Advances in Neural Information Processing Systems December, 2012

  18. Ollivier, Y.: Auto-encoders: reconstruction versus compression. [Online] https://hal.archives-ouvertes.fr/hal-01104268, 2014.

  19. Del Testa, D.; Rossi, M.: Lightweight lossy compression of biometric patterns via denoising autoencoders. IEEE Signal Process. Lett. 22(12), 2304–2308 (2015)

    Article  Google Scholar 

  20. Huang, K.-Y.: Neural networks for seismic principal components analysis. IEEE Trans. Geosci. Remote Sensing 37, 297–311 (1999)

    Article  Google Scholar 

  21. Nuha, H.; Mohandes, M.; Liu, B.: Seismic data compression using auto-associative neural network and restricted Boltzmann machine. In: SEG Technical Program Expanded Abstracts October, Anaheim, 2018

  22. Akbarizadeh, G.; Rangzan, K.; Kabolizadeh, M.: Effective supervised multiple-feature learning for fused radar and optical data classification. IET Radar Sonar Navig. 11(5), 768–777 (2016)

    Google Scholar 

  23. Sharifzadeh, F.; Akbarizadeh, G.; Kavian, Y.: Ship classification in SAR images using a new hybrid CNN–MLP classifier. J. Indian Soc. Remote Sens. 47, 1–12 (2018)

    Google Scholar 

  24. Kasun, L.L.C.; Zhou, H.; Huang, G.-B.; Vong, C.M.: Representational learning with extreme learning machine for big data. IEEE Intell. Syst. 28(6), 31–34 (2013)

    Google Scholar 

  25. Akbarizadeh, G.: A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images. IEEE Trans. Geosci. Remote Sens. 50(11), 4358–4368 (2012)

    Article  Google Scholar 

  26. Raeisi, A.; Akbarizadeh, G.; Mahmoudi, A.: Combined method of an efficient cuckoo search algorithm and nonnegative matrix factorization of different zernike moment features for discrimination between oil spills and lookalikes in SAR Images. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 99, 1–13 (2018)

    Google Scholar 

  27. Modava, M.; Akbarizadeh, G.; Soroosh, M.: Integration of spectral histogram and level set for coastline detection in SAR images. IEEE Trans. Aerosp. Electron. Syst. 55(2), 810–819 (2019)

    Article  Google Scholar 

  28. Farbod, M.; Akbarizadeh, G.; Kosarian, A.; Rangzan, K.: Optimized fuzzy cellular automata for synthetic aperture radar image edge detection. J. Electron. Imaging 27(1), 13–30 (2018)

    Article  Google Scholar 

  29. Hinton, G.E.; Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  30. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.-R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97 (2012)

    Article  Google Scholar 

  31. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  32. Salakhutdinov, R.; Larochelle, H.: Efficient learning of deep Boltzmann machines. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics May, 2010.

  33. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  34. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Tee, Y.W.; Hinton, G.E.: Rate-coded restricted Boltzmann machines for face recognition. Neural Inf. Process. Syst. 13, 908–914 (2000)

    Google Scholar 

  36. Huang, G.; Zhou, H.; Ding, X.; Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2012)

    Article  Google Scholar 

  37. Akbarizadeh, G.; Moghaddam, A.: Detection of lung nodules in CT scans based on unsupervised feature learning and fuzzy inference. J. Med. Imaging Health Inf. 6(2), 477–483 (2016)

    Article  Google Scholar 

  38. Huang, G.; Chen, L.; Siew, C.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  39. Johnson, W.; Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 26(1), 189–206 (1984)

    Article  MathSciNet  Google Scholar 

  40. Mousa, W.A.; Al-Shuhail, A.A.: Processing of seismic reflection data using MATLAB™. Synth. Lect. Signal Process. 5, 1–97 (2011)

    Article  Google Scholar 

  41. Rubin, M.J.; Wakin, M.B.; Camp, T.: Lossy compression for wireless seismic data acquisition. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9, 236–252 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Center for Energy and Geo Processing (CeGP) at King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia, under Project GTEC1801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mohandes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuha, H.H., Balghonaim, A., Liu, B. et al. Deep Neural Networks with Extreme Learning Machine for Seismic Data Compression. Arab J Sci Eng 45, 1367–1377 (2020). https://doi.org/10.1007/s13369-019-03942-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03942-3

Keywords

Navigation