Synthesis of Eco-friendly Cobalt Nanoparticles Using Celosia argentea Plant Extract and Their Efficacy Studies as Antioxidant, Antibacterial, Hemolytic and Catalytical Agent

Abstract

The aim of the present study was to synthesize safe and economical cobalt nanoparticles by using secondary metabolites from Celosia argentea plant extract and to further evaluate their antioxidant, antibacterial and hemolytic activities. Catalytic activity of these green synthesized nanoparticles was evaluated for the degradation studies of cationic methylene dye in the presence and absence of anionic surfactant (sodium dodecyl sulfate). Different parameters affecting the dye degradation procedure were investigated and optimized. Fourier transform infrared spectroscopy studies identified the functional groups present in bioactive compounds which were responsible for the reduction and stabilization of the cobalt nanoparticles. The green synthesized cobalt nanoparticles were characterized by X-ray diffraction, scanning electron microscope and energy-dispersive X-ray spectroscopy. Cobalt nanoparticles (CoNPs) exhibited good antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl radical, and its scavenging power was found to be increased with increasing concentration. CoNPs also displayed good antimicrobial activity against tested microbes. Moreover, they showed very less toxicity and efficient activity toward dye degradation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Iravani, S.: Green synthesis of metal nanoparticles using plants. Green Chem. 13(10), 2638–2650 (2011)

    Article  Google Scholar 

  2. 2.

    Arunachalama, R.; Dhanasingha, S.; Kalimuthua, B.; Uthirappana, M.; Rosea, C.; Mandal, A.B.: Colloids Surf. 94B, 226–230 (2012)

    Article  Google Scholar 

  3. 3.

    Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N.: Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—an updated report. Saudi Pharm. J. 24(4), 473–484 (2016)

    Article  Google Scholar 

  4. 4.

    Singh, P.; Kim, Y.J.; Zhang, D.C.; Yang, D.: Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34(7), 588–599 (2016)

    Article  Google Scholar 

  5. 5.

    Khan, H.A.A.; Naseem, B.; Vardhini, V.: Synthesis of nanoparticles from plant extracts. Int. J. Mod. Chem. Appl. Sci. 2(3), 195–203 (2015)

    Google Scholar 

  6. 6.

    Varaprasad, T.; Govindh, B.; Rao, V.B.: Green synthesized cobalt nanoparticles using Asparagus racemosus root extract and evaluation of antibacterial activity. Int. J. Chem. Tech. Res. 10(8), 339–345 (2017)

    Google Scholar 

  7. 7.

    Sharma, D.; Kanchi, S.; Bisetty, K.: Biogenic synthesis of nanoparticles: a review. Arab. J. Chem. (2015). https://doi.org/10.1016/j.arabjc.2015.11.002

    Google Scholar 

  8. 8.

    Savithramma, N.; Rao, M.L.; Rukmini, K.; Devi, P.S.: Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. Int. J. Chem. Tech. Res. 3(3), 1394–1402 (2011)

    Google Scholar 

  9. 9.

    Rice-Evans, C.: Flavonoids and isoflavones: absorption, metabolism and bioactivity. Free Rad. Biol. 36, 827–828 (2004)

    Article  Google Scholar 

  10. 10.

    Nasrollahzadeh, M.; Sajadi, S.M.: Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3 + 2] cycloaddition of azides and alkynes at room temperature. J. Colloid Interface Sci. 457, 141–147 (2015)

    Article  Google Scholar 

  11. 11.

    Bakar, A.D.; Ahmed, A.B.; Taha, M.R.: In vitro callus induction and plant regeneration of Celosia argentea: an important medicinal plant. Braz. Arch. Biol. Technol. 57(6), 860–866 (2014)

    Article  Google Scholar 

  12. 12.

    Varadharaj, V.; Muniyappan, J.: Phytochemical and phytotherapeutic properties of Celosia species a review. Int. J. Pharm. Phys. Res. 9(6), 820–825 (2017)

    Google Scholar 

  13. 13.

    Diallo, A.; Beye, A.C.; Doyle, T.B.; Park, E.; Maaza, M.: Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: physical properties. Green Chem. Lett. Rev. 8(3–4), 30–36 (2015)

    Article  Google Scholar 

  14. 14.

    Koyyati, R.; Kudle, K.R.; Padigya, P.R.M.: Evaluation of antibacterial and cytotoxic activity of green synthesized cobalt nanoparticles using Raphanus sativus var. longipinnatus leaf extract. Int. J. Pharm. Tech. Res. 9(3), 466–472 (2016)

    Google Scholar 

  15. 15.

    Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Maaza, M.: Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.07.004

    Google Scholar 

  16. 16.

    Igwe, O.U.; Ekebo, E.S.: Biofabrication of cobalt nanoparticles using leaf extract of Chromolaena odorata and their potential antibacterial application. Res. J. Chem. Sci. 8(1), 11–17 (2018)

    Google Scholar 

  17. 17.

    Kuchekar, S.R.; Dhage, P.M.; Aher, H.R.; Han, S.H.: Green synthesis of cobalt nanoparticles, its characterization and antimicrobial activities. Int. J. Phys. Chem. Sci. 7(12), 190–198 (2018)

    Google Scholar 

  18. 18.

    Dubey, S.; Kumar, J.; Kumar, A.; Sharma, Y.C.: Facile and green synthesis of highly dispersed cobalt oxide (Co3O4) nano powder: characterization and screening of its eco-toxicity. Adv. Powder Technol. 29(11), 2583–2590 (2018)

    Article  Google Scholar 

  19. 19.

    Naz, S.; Khaskheli, A.R.; Aljabour, A.; Kara, H.; Talpur, F.N.; Sherazi, S.T.H.; Khaskheli, A.A.; Jawaid, S.: Synthesis of highly stable cobalt nanomaterial using gallic acid and its application in catalysis. Adv. Chem. (2014). https://doi.org/10.1155/2014/686925

    Google Scholar 

  20. 20.

    Siada, R.S.O.: Green synthesized cobalt nano particles for using as a good candidate for sensing organic compounds. J. Electrochem. Sci. Technol. 6(4), 111–115 (2015)

    Article  Google Scholar 

  21. 21.

    Lee, K.; Shibamoto, T.: Antioxidant property of aroma extract isolated from clove bud [Syzygiun aromaticum (L.) Merr. et Perry]. Food Chem. 74, 443–448 (2001)

    Article  Google Scholar 

  22. 22.

    CLSI (The Clinical Laboratory Standard Institute): Agar dilution and disk diffusion susceptibility testing of campylobacter spp. J. Clin. Microbiol. 45(8), 2758–2759 (2010)

    Google Scholar 

  23. 23.

    Powell, W.A.; Catranis, C.M.; Maynard, C.A.: Design of self-processing antimicrobial peptides for plant protection. Lett. Appl. Microbiol. 31(2), 163–165 (2000)

    Article  Google Scholar 

  24. 24.

    Sharma, P.; Sharma, J.D.: In vitro hemolysis of human erythrocytes by plant extracts with antiplasmodial activity. J. Ethnopharm. 74, 239–243 (2001)

    Article  Google Scholar 

  25. 25.

    Keyhanian, F.; Shariati, S.; Faraji, M.; Hesabi, M.: Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions. Arab. J. Chem. 9, S348–S354 (2016)

    Article  Google Scholar 

  26. 26.

    Priyadarshini, S.; Gopinath, V.; Priyadharsshini, N.M.; Mubarak, A.D.; Velusamy, P.: Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf. B 102, 232–237 (2012)

    Article  Google Scholar 

  27. 27.

    Begum, N.A.; Mondal, S.; Basu, S.; Laskar, R.A.; Mandal, D.: Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids Surf. B 71, 113–118 (2009)

    Article  Google Scholar 

  28. 28.

    Kasthuri, J.; Veerapandian, S.; Rajendiran, N.: Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf. B 68, 55–60 (2009)

    Article  Google Scholar 

  29. 29.

    Gopinath, V.; Priyadarshini, S.; Priyadharsshini, N.M.; Pandian, K.; Velusamy, P.: Biogenic synthesis of antibacterial silver chloride nanoparticles using leaf extracts of Cissus quadrangularis. Linn. Mater. Lett. 91, 224–227 (2013)

    Article  Google Scholar 

  30. 30.

    Vaishnava, J.; Subhaa, V.; Kirubanandana, S.; Arulmozhib, M.; Renganathana, S.: Green synthesis of zinc oxide nanoparticles by Celosia argentea and its characterization. J. Optoelectron. Biomed. Mater. 9(1), 59–71 (2017)

    Google Scholar 

  31. 31.

    Ahmed, K.; Tariq, I.; Siddiqui, S.U.; Mudassir, M.: Green synthesis of cobalt nanoparticles by using methanol extract of plant leaf as reducing agent. Pure Appl. Biol. 5(3), 453–457 (2016)

    Google Scholar 

  32. 32.

    Diallo, A.; Beye, A.C.; Doyle, T.B.; Park, E.; Maaza, M.: Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: physical properties. Green Chem. Lett. Rev. 8, 30–36 (2015)

    Article  Google Scholar 

  33. 33.

    Truskewycza, A.; Shuklab, R.; Ball, S.A.: Iron nanoparticles synthesized using green tea extracts for the fenton-like degradation of concentrated dye mixtures at elevated temperatures. J. Environ. Chem. Eng. 4, 4409–4417 (2016)

    Article  Google Scholar 

  34. 34.

    Das, J.; Velusamy, P.: Catalytic reduction of methylene blue using biogenic gold nanoparticles from Sesbania grandiflora L. J. Taiwan Inst. Chem. Eng. 45(5), 2280–2285 (2014)

    Article  Google Scholar 

  35. 35.

    Fu, L.; Fu, Z.: Plectranthus amboinicus leaf extract-assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram. Int. 41(2), 2492–2496 (2015)

    Article  Google Scholar 

  36. 36.

    Raja, S.; Ramesh, V.; Thivaharan, V.: Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab. J. Chem. 10(2), 253–261 (2017)

    Article  Google Scholar 

  37. 37.

    Molehin, O.R.; Adefegha, S.A.; Oboh, G.; Saliu, J.A.; Athayde, M.L.; Boligon, A.A.: Comparative study on the phenolic content, antioxidant properties and HPLC fingerprinting of three varieties of Celosia species. J. Food Biochem. 38, 575–583 (2014)

    Article  Google Scholar 

  38. 38.

    Shen, S.; Ding, X.; Ouyang, M.A.; Wu, Z.J.; Xie, L.H.: A new phenolic glycoside and cytotoxic constituents from Celosia argentea. J. Asian Nat. Prod. Res. 12, 821–827 (2010)

    Article  Google Scholar 

  39. 39.

    Kalaiyarasu, T.; Karthi, N.; Sharmila, G.V.; Manju, V.: In vitro assessment of antioxidant and antibacterial activity of green synthesized silver nanoparticles from Cigitaria radicosa leaves. Asian J. Pharm. Clin. Res. 9(1), 297–302 (2016)

    Google Scholar 

  40. 40.

    Kapil, A.: The challenge of antibiotic resistance: need to contemplate. Indian J. Med. Res. 121(2), 83–91 (2005)

    Google Scholar 

  41. 41.

    Patil, S.P.A.; Kumbhar, S.T.: Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochem. Biophys. Rep. 10, 76–81 (2017)

    Google Scholar 

  42. 42.

    Golubeva, O.Y.; Shamova, O.V.; Orlov, D.S.; Pazina, T.Y.; Boldina, A.S.; Kokryakov, V.N.: Study of antimicrobial and hemolytic activities of silver nanoparticles prepared by chemical reduction. Glass Phys. Chem. 36(5), 628–634 (2010)

    Article  Google Scholar 

  43. 43.

    Raju, C.A.I.; Bharadwaj, M.S.; Prem, K.; Satyanandam, K.: Green synthesis of iron nanoparticles using Albizia lebbeck leaves for synthetic dyes decolorization. Int. J. Sci. Eng. Technol. Res. 5(12), 3429–3434 (2016)

    Google Scholar 

  44. 44.

    Mahmoodi, N.; Abdi, J.; Bastani, D.: Direct dyes removal using modified magnetic ferrite nanoparticle. J. Environ. Health Sci. Eng. 12(1), 96 (2014)

    Article  Google Scholar 

  45. 45.

    Yang, W.W.; Zhong, L.; Li, W.H.; Cui, S.Y.; Wei, J.: Fast removal of methylene blue from aqueous solution by adsorption onto poorly crystalline hydroxyapatite nanoparticles. Dig. J. Nanomater. Biostruct. 10(4), 1343–1363 (2015)

    Google Scholar 

  46. 46.

    Sahoo, C.; Gupta, A.K.; Sasidharan, P.I.M.: Photocatalytic degradation of methylene blue dye from aqueous solution using silver ion-doped TiO2 and its application to the degradation of real textile wastewater. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 47(10), 1428–1438 (2012)

    Article  Google Scholar 

  47. 47.

    Tan, K.A.; Morad, N.; Teng, T.T.; Norli, I.; Panneerselvam, P.: Removal of cationic dye by magnetic nanoparticle (Fe3O4) impregnated onto activated maize cob powder and kinetic study of dye waste adsorption. APCBEE Proc. 1, 83–89 (2012)

    Article  Google Scholar 

  48. 48.

    Seow, T.W.; Lim, C.K.: Removal of dye by adsorption: a review. Int. J. Appl. Eng. Res. 11(4), 2675–2679 (2016)

    Google Scholar 

  49. 49.

    Mohammadi, A.; Karimi, A.A.: Methylene blue removal using surface-modified TiO2 nanoparticles: a comparative study on adsorption and photocatalytic degradation. J. Water Environ. Nanotechnol. 2(2), 118–128 (2017)

    Google Scholar 

  50. 50.

    Edison, J.I.T.; Sethuraman, M.G.: Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 47, 135–1351 (2012)

    Article  Google Scholar 

  51. 51.

    Ahuja, N.; Chopra, K.A.; Ansari, A.A.: Removal of colour from aqueous solutions by using zero valent iron nanoparticles. IOSR J. Environ. Sci. Toxicol. Food Technol. 10(1), 4–14 (2016)

    Google Scholar 

Download references

Acknowledgement

The authors are thankful to Higher Education Commission of Pakistan for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Zaib.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahzadi, T., Zaib, M., Riaz, T. et al. Synthesis of Eco-friendly Cobalt Nanoparticles Using Celosia argentea Plant Extract and Their Efficacy Studies as Antioxidant, Antibacterial, Hemolytic and Catalytical Agent. Arab J Sci Eng 44, 6435–6444 (2019). https://doi.org/10.1007/s13369-019-03937-0

Download citation

Keywords

  • Celosia argentea
  • Plant extract
  • Cobalt nanoparticles
  • Antioxidant
  • Antibacterial
  • Hemolytic activity
  • Methylene blue