Skip to main content

A Proposed Temperature-Dependent Photovoltaic Efficiency Difference Factor for Evaluating Photovoltaic Module Cooling Techniques in Natural or Forced Fluid Circulation Mode

A Correction to this article was published on 10 June 2022

This article has been updated


Photovoltaic (PV) system is one of the alternative technologies that is able to convert solar energy to electricity. The operation of the PV causes its solar cell temperature to be increased, and thus a drop in its performance. Although this loss of PV efficiency can be reduced by incorporating cooling techniques into the PV, there are no existing methods to objectively evaluate the PV cooling techniques. Hence, a method for assessing the PV cooling techniques is proposed here, based on a new parameter called the temperature-dependent PV efficiency difference factor, which is defined and derived. This factor identifies the relevant parameters that effect the efficiency that leads to the assessment of the overall PV cooling technique. This parameter can indicate if the cooling technique is contributing to the PV efficiency gain or loss, or neutral and may have the potential to be a measure of PV cooler performance evaluation by manufacturers and designers of such products.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Change history


A :

Area (m2)

D :

Diameter of the pipe or channel (m)

F :

Factor, dimensionless


Fill factor

f :

Darcy friction factor, dimensionless

h :

Convection heat transfer coefficient (W/m2 K)

G :

Solar radiation (W/m2)

g :

Gravitational acceleration (m/s2)

K :

Coefficient loss

L :

Length of pipe or channel (m)

\( \dot{m} \) :

Mass flow rate of the fluid (kg/s)

I :

Electric current (A)

P :

Power (W)

\( \Delta P \) :

Pressure drop (N/m2)

\( \dot{Q} \) :

Heat transfer (W)

T :

Temperature (°C)

V :

Electric voltage (V)

v :

Velocity of the fluid (m/s)




Forced convection using pump or fan




Open circuit


Photovoltaic module


Photovoltaic module with a cooling technique






Short circuit


Standard test conditions


Temperature-dependent PV efficiency difference

\( \rho \) :

Density of the fluid (kg/m3)

\( \beta \) :

Fractional decrease in PV efficiency per unit temperature increase (K−1)

η :


\( \gamma \) :

Radiation coefficient for cell efficiency

\( \theta \) :

Inclination angle


  1. Li, Quan; Wolfs, P.: A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations. IEEE Trans. Power Electron. 23(3), 1320–1333 (2008)

    Article  Google Scholar 

  2. Rappaportt, Paul: The photovoltaic effect and its utilization. Sol. Energy 3, 8–18 (1959)

    Article  Google Scholar 

  3. Green, M.A.: Photovoltaics: technology overview. Energy Policy 28, 989–998 (2000)

    Article  Google Scholar 

  4. Skoplaki, E.; Palyvos, J.A.: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol. Energy 83, 614–624 (2009)

    Article  Google Scholar 

  5. Zondag, H.A.: Flat-plate PV-Thermal collectors and systems: a review. Renew. Sustain. Energy Rev. 12, 891–959 (2008)

    Article  Google Scholar 

  6. Evans, D.L.: Simplified method for predicting photovoltaic array output. Sol. Energy 27, 555–560 (1981)

    Article  Google Scholar 

  7. Notton, G.; Cristofari, C.; Mattei, M.; Poggi, P.: Modelling of a double-glass photovoltaic module using finite differences. Appl. Therm. Eng. 25, 2854–2877 (2005)

    Article  Google Scholar 

  8. Sultan, S.M.; Efzan, M.N.E.: Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications. Sol. Energy 173, 939–954 (2018)

    Article  Google Scholar 

  9. Sultan, S.M.; Tso, C.P.; Efzan, M.N.E.: Comments on “Performance evaluation of photovoltaic thermal solar air collector for composite climate of India. Solar Energy Mater. Solar Cells.

  10. Animasaun, I.L.: Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-darcian MHD dissipative Casson fluid flow with suction and nth order of chemical reaction. J. Niger. Math. Soc. 34(1), 11–31 (2015)

    Article  MathSciNet  Google Scholar 

  11. Shah, N.A.; Animasaun, I.L.; Ibraheem, R.O.; Babatunde, H.A.; Sandeep, N.; Pop, I.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq. 249, 980–990 (2018)

    Article  Google Scholar 

  12. Kolade Koriko, O.; Oreyeni, T.; John Omowaye, A.; Lare Animasaun, I.: homotopy analysis of MHD free convective micropolar fluid flow along a vertical surface embedded in non-darcian thermally-stratified medium. Open J. Fluid Dyn. 06(03), 198–221 (2016)

    Article  Google Scholar 

  13. Cengel, Y.A.; Ghajar, A.: Heat and Mass Transfer Fundamentals and Applications. Mc Graw Hill, New York (2011)

    Google Scholar 

  14. Ziapour, B.M.; Khalili, M.B.: PVT type of the two-phase loop mini tube thermosyphon solar water heater. Energy Convers. Manag. 129, 54–61 (2016)

    Article  Google Scholar 

  15. Xu, P.; Zhang, X.; Shen, J.; Zhao, X.; He, W.; Li, D.: Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T) system against conventional photovoltaic (PV) system. Energy Rep. 1, 30–35 (2015)

    Article  Google Scholar 

  16. Fuentesa, M.; Vivar, M.; de la Casa, J.; Aguilera, J.: An experimental comparison between commercial hybrid PV-T and simple PV systems intended for BIPV. Renew. Sustain. Energy Rev. 93, 110–120 (2018)

    Article  Google Scholar 

  17. Liang, R.; Pan, Q.; Wang, P.; Zhang, J.: Experiment research of solar PV/T cogeneration system on the building façade driven by a refrigerant pump. Energy 161, 744–752 (2018)

    Article  Google Scholar 

  18. Al-Shamani, A.N.; Mat, S.; Ruslan, M.H.; Abed, A.M.; Sopian, K.: Effect of new ellipse design on the performance enhancement of PV/T collector: CDF approach. Int. J. Environ. Sustain. 5, 54–60 (2016)

    Article  Google Scholar 

  19. Tiwari, G.N.; Fischer, O.; Mishra, R.K.; Al-Helal, I.M.: Performance evaluation of N-photovoltaic thermal (PVT) water collectors partially covered by photovoltaic module connected in series: an experimental study. Sol. Energy 134, 302–313 (2016)

    Article  Google Scholar 

  20. Alizadeh, H.; Ghasempour, R.; Shafii, M.B.; Ahmadi, M.H.; Yan, W.-M.; Nazari, M.A.: Numerical simulation of PV cooling by using single turn pulsating heat pipe. Int. J. Heat Mass Transf. 127, 203–208 (2018)

    Article  Google Scholar 

  21. Al-Shamani, A.N.; Alghoul, M.A.; Elbreki, A.M.; Ammar, A.A.; Abed, A.M.; Sopian, K.: Mathematical and experimental evaluation of thermal and electrical efficiency of PV/T collector using different water based nano-fluids. Energy 145, 770–792 (2018)

    Article  Google Scholar 

  22. Nahar, A.; Hasanuzzaman, M.; Rahim, N.A.: Numerical and experimental investigation on the performance of a photovoltaic thermal collector with parallel plate flow channel under different operating conditions in Malaysia. Sol. Energy 144, 517–528 (2017)

    Article  Google Scholar 

  23. Rahman, M.M.; Hasanuzzaman, M.; Rahim, N.A.: Effects of operational conditions on the energy efficiency of photovoltaic modules operating in Malaysia. J. Clean. Prod. 143, 912–924 (2017)

    Article  Google Scholar 

  24. Fayaz, H.; Nasrin, R.; Rahim, N.A.; Hasanuzzaman, M.: Energy and exergy analysis of the PVT system: effect of nanofluid flow rate. Sol. Energy 169, 217–230 (2018)

    Article  Google Scholar 

  25. Fadhel, M.I.; Sultan, S.M.; Alkaff, S.A.: Theoretical study of new configuration of PVT system design. J. Adv. Mater. Res. 772, 681–687 (2013)

    Article  Google Scholar 

  26. Sultan, S.M.; Fadhel, M.I.; Alkaff, S.A.: Performance analysis of the photovoltaic/thermal solar collector for different Malaysian condition. J. Appl. Mech. Mater. 467, 522–527 (2014)

    Article  Google Scholar 

  27. Nahar, A.; Hasanuzzaman, M.; Rahim, N.A.; Parvin, S.: Numerical investigation on the effect of different parameters in enhancing heat transfer performance of photovoltaic thermal systems. Renew. Energy 132, 284–295 (2019)

    Article  Google Scholar 

  28. Al-Shamani, A.N.; Mat, S.; Ruslan, M.H.; Abed, A.M.; Sopian, K.: Numerical study on the characteristics of a specially designed rectangular tube absorber photovoltaic thermal collector (PVT). WSEAS Trans. Environ. Dev. 11, 23–28 (2016)

    Google Scholar 

  29. Sakellariou, E.; Axaopoulos, P.: Simulation and experimental performance analysis of a modified PV panel to a PVT collector. Sol. Energy 155, 715–726 (2017)

    Article  Google Scholar 

  30. Bilbao, J.I.; Sproul, A.B.: Detailed PVT-water model for transient analysis using RC networks. Sol. Energy 115, 680–693 (2015)

    Article  Google Scholar 

  31. Yang, X.; Sun, L.; Yuan, Y.; Zhao, X.; Cao, X.: Experimental investigation on performance comparison of PV/T-PCM system and PV/T system. Renew. Energy 119, 152–159 (2018)

    Article  Google Scholar 

  32. Sultan, S.M.; Tso, C.P.; Efzan, E.: A thermal performance study for different glazed water based photovoltaic thermal collectors. In: AIP Conference Proceedings, vol. 1, p. 020307 (2018)

  33. Sultan, S.M.; Tso, C.P.; Efzan, E.: The effect of mass flow rate and solar radiation on the photovoltaic efficiency of a glazed water based PVT. In: AIP Conference Proceedings, vol. 1, p. 020309 (2018)

  34. Lewis, C.A.; Kirkpatric, V.: Solar cell characteristics at high solar intensities and temperatures. In: 8th IEEE Photovoltaic Specialists Conference Record, pp. 123–134. Seattle, Washington (1970)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sakhr M. Sultan.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultan, S.M., Tso, C.P. & Efzan, M.N.E. A Proposed Temperature-Dependent Photovoltaic Efficiency Difference Factor for Evaluating Photovoltaic Module Cooling Techniques in Natural or Forced Fluid Circulation Mode. Arab J Sci Eng 44, 8123–8128 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: