Skip to main content

A New pW CMOS Sub-Hertz Timer

Abstract

A low-voltage and ultra-low power sub-Hertz timer using transistor operating in sub-threshold region is proposed. The sub-Hertz operation is achieved by controlling the amount of currents charging and discharging the timer’s capacitor instead of using large passive components. Pulse width modulation is accomplished by sizing the transistors in charging and discharging control blocks. The timer is working from a single supply voltage of as low as 0.4 V. The circuit is designed in a standard CMOS 150 nm and simulated using Cadence. Simulation results show an oscillation frequency of as low as 0.0217 Hz (a period of 46 s) while using integrable capacitor (100 pF). Its average power consumption for one period is 13.91 pW.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Rodriguez-Villegas, E.; Casson, A.; Corbishley, P.: A sub-Hertz nanopower low pass filter. IEEE Trans. Circuits Syst. II 58(2), 351–355 (2011)

    Article  Google Scholar 

  2. Phillip, N.; Arun, P.; Anantha, C.: Ultra low-energy relaxation oscillator with 230 fJ/cycle. IEEE J. Solid-State Circuits 51(4), 789–799 (2016)

    Article  Google Scholar 

  3. Rafiq Dar, M.; Kant, N.; Khanday, F.; Psychalinos, C.: Fractional-order filter design for ultra-low frequency applications. In: IEEE International Conference on Recent Trends in Electronics Information Communication Technology, pp. 20–21 (2016)

  4. Zhang, Y.; Rhee, W.; Kim, T.; Park, H.; Wang, Z.: A 0.35–0.5-V 18–152 MHz digitally controlled relaxation oscillator with adaptive threshold calibration in 65-nm CMOS. IEEE Trans. Circuits Syst. II 62(8), 736–740 (2015)

    Article  Google Scholar 

  5. Aita, A.; De la Cruz, G.; Bashirullah, R.: A 0.45 V CMOS relaxation oscillator with ± 2.5% frequency stability from −55 °C to 125 °C. In: IEEE International Symposium on Circuits and Systems, pp. 493–496 (2015)

  6. Srivyshnavi, T.; Srinivasulu, A.: A current mode Schmitt trigger using current differencing transconductance amplifier. In: IEEE International Conference on Signal Processing, Communication and Networking (2015)

  7. Yuan, F.: A high-speed differential CMOS Schmitt trigger with regenerative current feedback and adjustable hysteresis. Analog Integr. Circuits Signal Process. 63(1), 121–127 (2010)

    Article  Google Scholar 

  8. Ni, Y.; Onabajo, M.: A low-power temperature-compensated CMOS relaxation oscillator. Analog Integr. Circuits Signal Process. 79(2), 309–317 (2014)

    Article  Google Scholar 

  9. Xu, Z.; Wang, W.; Ning, N.; Lim, W.; Liu, Y.; Yu, Q.: A supply voltage and temperature variation-tolerant relaxation oscillator for biomedical systems based on dynamic threshold and switched resistors. IEEE Trans. Very Large-Scale Integr. Syst. 23(4), 786–790 (2015)

    Article  Google Scholar 

  10. You, Y.; Kim, N; Lu, D.; et al.: Impact on Off-state leakage current in PMOS device by metallic contamination. In: IEEE International Symposium on Semiconductor Manufacturing, pp. 179–182 (2006)

  11. Zhai, B.; Nazhandali, L.; Olson, J.; et al.: A 2.60 pJ/inst subthreshold sensor processor for optimal energy efficiency. In: Symposium on VLSI Circuits, Digest of Technical Papers (2006)

  12. McCorquodale, M.; Pernia, S, O’Day, J.; et al.: A 0.5-to-480 MHz self-referenced CMOS clock generator with 90 ppm total frequency error and spread-spectrum capability. In: IEEE International Solid-State Circuits Conference, pp. 349–351 (2008)

  13. Lin, Y.-S.; Sylvester, D.; Blaauw, D.: A sub-pW timer using gate leakage for ultra-low-power sub-Hz monitoring systems. In: IEEE Custom Intergrated Circuits Conference, pp. 397-400 (2007)

  14. Lin, Y.-S.; Sylvester, D.; Blaauw, D.: A 150 pW program-and-hold timer for ultra-low power sensor platforms. In: IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp. 326–328 (2009)

  15. Jeong, S.; Lee, I.; Blaauw, D.; Sylvester, D.: A 5.8 nW CMOS wake-up timer for ultra-low-power wireless applications. IEEE J. Solid-State Circuits 50(8), 1754–1763 (2015)

    Article  Google Scholar 

  16. Lee, Y.; Giridhar, B.; Foo, Z.; et al.: A sub-nW multi-stage temperature compensated timer for ultra-low-power sensor nodes. IEEE J. Solid-State Circuits 48(10), 2511–2521 (2013)

    Article  Google Scholar 

  17. Funke, D.; Mayr, P.; Maeke, T.; et al.: Ultra low-power, -area and -frequency CMOS thyristor based oscillator for autonomous microsystems. Analog Integr. Circuits Signal Process. 89, 347–356 (2016)

    Article  Google Scholar 

  18. Cho, Y.K.; Kim, M.D.; Kim, C.Y.: A low switching-noise and high efficiency buck converter using a continuous-time reconfigurable delta-sigma modulator. IEEE Trans Power Electron. PP(89), 1–1 (2018)

    Google Scholar 

  19. Salem, L.; Warchall, J.; Mercier, P.: A successive approximation recursive digital low-dropout voltage regulator with PD compensation and sub-LSB duty control. IEEE J. Solid-State Circuits 53(1), 35–49 (2018)

    Article  Google Scholar 

  20. Kim, S.-Y.; Park, Y.J.; Ali, I.; et al.: Design of a high efficiency DC–DC buck converter with two-step digital PWM and low power self-tracking zero current detector for IoT applications. IEEE Trans. Power Electron. 33(2), 1428–1439 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support of KAUST-KFUPM Initiative (KKI) program project #1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussain Alzaher.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahid, H., Alzaher, H. A New pW CMOS Sub-Hertz Timer. Arab J Sci Eng 45, 1379–1384 (2020). https://doi.org/10.1007/s13369-019-03928-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03928-1

Keywords

  • Sub-Hertz
  • Sub-threshold
  • Pulse width modulation
  • Monitoring applications
  • pW circuits