Rodriguez-Villegas, E.; Casson, A.; Corbishley, P.: A sub-Hertz nanopower low pass filter. IEEE Trans. Circuits Syst. II 58(2), 351–355 (2011)
Article
Google Scholar
Phillip, N.; Arun, P.; Anantha, C.: Ultra low-energy relaxation oscillator with 230 fJ/cycle. IEEE J. Solid-State Circuits 51(4), 789–799 (2016)
Article
Google Scholar
Rafiq Dar, M.; Kant, N.; Khanday, F.; Psychalinos, C.: Fractional-order filter design for ultra-low frequency applications. In: IEEE International Conference on Recent Trends in Electronics Information Communication Technology, pp. 20–21 (2016)
Zhang, Y.; Rhee, W.; Kim, T.; Park, H.; Wang, Z.: A 0.35–0.5-V 18–152 MHz digitally controlled relaxation oscillator with adaptive threshold calibration in 65-nm CMOS. IEEE Trans. Circuits Syst. II 62(8), 736–740 (2015)
Article
Google Scholar
Aita, A.; De la Cruz, G.; Bashirullah, R.: A 0.45 V CMOS relaxation oscillator with ± 2.5% frequency stability from −55 °C to 125 °C. In: IEEE International Symposium on Circuits and Systems, pp. 493–496 (2015)
Srivyshnavi, T.; Srinivasulu, A.: A current mode Schmitt trigger using current differencing transconductance amplifier. In: IEEE International Conference on Signal Processing, Communication and Networking (2015)
Yuan, F.: A high-speed differential CMOS Schmitt trigger with regenerative current feedback and adjustable hysteresis. Analog Integr. Circuits Signal Process. 63(1), 121–127 (2010)
Article
Google Scholar
Ni, Y.; Onabajo, M.: A low-power temperature-compensated CMOS relaxation oscillator. Analog Integr. Circuits Signal Process. 79(2), 309–317 (2014)
Article
Google Scholar
Xu, Z.; Wang, W.; Ning, N.; Lim, W.; Liu, Y.; Yu, Q.: A supply voltage and temperature variation-tolerant relaxation oscillator for biomedical systems based on dynamic threshold and switched resistors. IEEE Trans. Very Large-Scale Integr. Syst. 23(4), 786–790 (2015)
Article
Google Scholar
You, Y.; Kim, N; Lu, D.; et al.: Impact on Off-state leakage current in PMOS device by metallic contamination. In: IEEE International Symposium on Semiconductor Manufacturing, pp. 179–182 (2006)
Zhai, B.; Nazhandali, L.; Olson, J.; et al.: A 2.60 pJ/inst subthreshold sensor processor for optimal energy efficiency. In: Symposium on VLSI Circuits, Digest of Technical Papers (2006)
McCorquodale, M.; Pernia, S, O’Day, J.; et al.: A 0.5-to-480 MHz self-referenced CMOS clock generator with 90 ppm total frequency error and spread-spectrum capability. In: IEEE International Solid-State Circuits Conference, pp. 349–351 (2008)
Lin, Y.-S.; Sylvester, D.; Blaauw, D.: A sub-pW timer using gate leakage for ultra-low-power sub-Hz monitoring systems. In: IEEE Custom Intergrated Circuits Conference, pp. 397-400 (2007)
Lin, Y.-S.; Sylvester, D.; Blaauw, D.: A 150 pW program-and-hold timer for ultra-low power sensor platforms. In: IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp. 326–328 (2009)
Jeong, S.; Lee, I.; Blaauw, D.; Sylvester, D.: A 5.8 nW CMOS wake-up timer for ultra-low-power wireless applications. IEEE J. Solid-State Circuits 50(8), 1754–1763 (2015)
Article
Google Scholar
Lee, Y.; Giridhar, B.; Foo, Z.; et al.: A sub-nW multi-stage temperature compensated timer for ultra-low-power sensor nodes. IEEE J. Solid-State Circuits 48(10), 2511–2521 (2013)
Article
Google Scholar
Funke, D.; Mayr, P.; Maeke, T.; et al.: Ultra low-power, -area and -frequency CMOS thyristor based oscillator for autonomous microsystems. Analog Integr. Circuits Signal Process. 89, 347–356 (2016)
Article
Google Scholar
Cho, Y.K.; Kim, M.D.; Kim, C.Y.: A low switching-noise and high efficiency buck converter using a continuous-time reconfigurable delta-sigma modulator. IEEE Trans Power Electron. PP(89), 1–1 (2018)
Google Scholar
Salem, L.; Warchall, J.; Mercier, P.: A successive approximation recursive digital low-dropout voltage regulator with PD compensation and sub-LSB duty control. IEEE J. Solid-State Circuits 53(1), 35–49 (2018)
Article
Google Scholar
Kim, S.-Y.; Park, Y.J.; Ali, I.; et al.: Design of a high efficiency DC–DC buck converter with two-step digital PWM and low power self-tracking zero current detector for IoT applications. IEEE Trans. Power Electron. 33(2), 1428–1439 (2018)
Article
Google Scholar