Skip to main content
Log in

Robust Averaging–Geometric Aggregation Operators for Complex Intuitionistic Fuzzy Sets and Their Applications to MCDM Process

  • Research Article-Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents aggregation operators which encapsulate the interaction among the criteria and preferences under complex intuitionistic fuzzy (CIF) conditions. The current extensions of fuzzy set theory handle only the uncertain data by representing the satisfaction and dissatisfaction degrees as real values and hence lose some information. A modification to these, CIF sets are portrayed by complex-valued membership degrees and can handle the data concurrently using additional terms, called phase terms, which usually give knowledge related to periodicity. Motivated by the features of the CIF model, this paper studies some aggregation operators, weighted averaging and geometric, for CIF sets and investigates their properties. To ease with the possible application, we explore the decision-making (DM) process in the CIF set environment and present an algorithm to solve the multiple criteria DM problems. Finally, a practical example is presented to demonstrate the DM process based on the proposed operators and compared their performance with some similar approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, L.: Approaches to multiple attribute group decision making under intuitionistic fuzzy settings: application of Dempster–Shafer theory of evidence. Arab. J. Sci. Eng. (2018). https://doi.org/10.1007/s13369-018-3657-5

    Article  Google Scholar 

  2. Garg, H.; Kumar, K.: An advanced study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making. Soft Comput. 22(15), 4959–4970 (2018)

    Article  MATH  Google Scholar 

  3. Kumar, R.R.; Mishra, S.; Kumar, C.: A novel framework for cloud service evaluation and selection using hybrid MCDM methods. Arab. J. Sci. Eng. 43(12), 7015–7030 (2018)

    Article  Google Scholar 

  4. Kaur, G.; Garg, H.: Generalized cubic intuitionistic fuzzy aggregation operators using t-norm operations and their applications to group decision-making process. Arab. J. Sci. Eng. 44(3), 2775–2794 (2019)

    Article  Google Scholar 

  5. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  6. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  MATH  Google Scholar 

  7. Xu, Z.S.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15, 1179–1187 (2007)

    Article  Google Scholar 

  8. Xu, Z.S.; Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35, 417–433 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liao, H.; Xu, Z.: Intuitionistic fuzzy hybrid weighted aggregation operators. Int. J. Intell. Syst. 29(11), 971–993 (2014)

    Article  Google Scholar 

  10. Wang, W.; Liu, X.: Intuitionistic fuzzy information aggregation using Einstein operations. IEEE Trans. Fuzzy Syst. 20(5), 923–938 (2012)

    Article  Google Scholar 

  11. Garg, H.: Generalized intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application to decision making. Comput. Ind. Eng. 101, 53–69 (2016)

    Article  Google Scholar 

  12. Wang, W.Z.; Liu, X.W.: Intuitionistic fuzzy geometric aggregation operators based on Einstein operations. Int. J. Intell. Syst. 26, 1049–1075 (2011)

    Article  Google Scholar 

  13. Garg, H.: Novel intuitionistic fuzzy decision making method based on an improved operation laws and its application. Eng. Appl. Artif. Intell. 60, 164–174 (2017)

    Article  Google Scholar 

  14. Huang, J.Y.: Intuitionistic fuzzy Hamacher aggregation operator and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 27, 505–513 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garg, H.: Some series of intuitionistic fuzzy interactive averaging aggregation operators. SpringerPlus 5(1), 999 (2016). https://doi.org/10.1186/s40064-016-2591-9

    Article  Google Scholar 

  16. Goyal, M.; Yadav, D.; Tripathi, A.: Intuitionistic fuzzy genetic weighted averaging operator and its application for multiple attribute decision making in E-learning. Indian J. Sci. Technol. 9(1), 1–15 (2016)

    Article  Google Scholar 

  17. Garg, H.: A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making. Int. J. Intell. Syst. 31(9), 886–920 (2016)

    Article  Google Scholar 

  18. Zhou, W.; Xu, Z.: Extreme intuitionistic fuzzy weighted aggregation operators and their applications in optimism and pessimism decision-making processes. J. Intell. Fuzzy Syst. 32, 1129–1138 (2017)

    Article  MATH  Google Scholar 

  19. Zhao, H.; Xu, Z.; Ni, M.; Liu, S.: Generalized aggregation operators for intuitionistic fuzzy sets. Int. J. Intell. Syst. 25(1), 1–30 (2010)

    Article  MATH  Google Scholar 

  20. Yager, R.R.: On ordered weighted avergaing aggregation operators in multi-criteria decision making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

    Article  Google Scholar 

  21. Wei, G.: Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making. Appl. Soft Comput. 10, 423–431 (2010)

    Article  Google Scholar 

  22. Xu, Z.; Xia, M.: Induced generalized intuitionistic fuzzy operators. Knowl. Based Syst. 24(2), 197–209 (2011)

    Article  Google Scholar 

  23. Garg, H.: Intuitionistic fuzzy hamacher aggregation operators with entropy weight and their applications to multi-criteria decision-making problems. Iran. J. Sci. Technol. Trans. Electr. Eng. (2019). https://doi.org/10.1007/s40998-018-0167-0

    Article  Google Scholar 

  24. He, Y.; Chen, H.; Zhau, L.; Liu, J.; Tao, Z.: Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making. Inf. Sci. 259, 142–159 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Arora, R.; Garg, H.: Robust aggregation operators for multi-criteria decision making with intuitionistic fuzzy soft set environment. Sci. Iran. E 25(2), 931–942 (2018)

    Google Scholar 

  26. Arora, R.; Garg, H.: Prioritized averaging/geometric aggregation operators under the intuitionistic fuzzy soft set environment. Sci. Iran. 25(1), 466–482 (2018)

    Google Scholar 

  27. Garg, H.; Kumar, K.: Linguistic interval-valued atanassov intuitionistic fuzzy sets and their applications to group decision-making problems. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2897961

    Article  Google Scholar 

  28. Kumar, K.; Garg, H.: TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Comput. Appl. Math. 37(2), 1319–1329 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, S.M.; Chang, C.H.: Fuzzy multiattribute decision making based on transformation techniques of intuitionistic fuzzy values and intuitionistic fuzzy geometric averaging operators. Inf. Sci. 352–353, 133–149 (2016)

    Article  MATH  Google Scholar 

  30. Kumar, K.; Garg, H.: Connection number of set pair analysis based TOPSIS method on intuitionistic fuzzy sets and their application to decision making. Appl. Intell. 48(8), 2112–2119 (2018)

    Article  Google Scholar 

  31. Arora, R.; Garg, H.: Group decision-making method based on prioritized linguistic intuitionistic fuzzy aggregation operators and its fundamental properties. Comput. Appl. Math. 38(2), 1–36 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kaur, G.; Garg, H.: Multi-attribute decision making based on bonferroni mean operators under cubic intuitionistic fuzzy set environment. Entropy 20(1), 65 (2018). https://doi.org/10.3390/e20010065

    Article  MathSciNet  Google Scholar 

  33. Ramot, D.; Milo, R.; Fiedman, M.; Kandel, A.: Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 10(2), 171–186 (2002)

    Article  Google Scholar 

  34. Ramot, D.; Friedman, M.; Langholz, G.; Kandel, A.: Complex fuzzy logic. IEEE Trans. Fuzzy Syst. 11(4), 450–461 (2003)

    Article  Google Scholar 

  35. Dick, S.; Yager, R.R.; Yazdanbakhsh, O.: On pythagorean and complex fuzzy set operations. IEEE Trans. Fuzzy Syst. 24(5), 1009–1021 (2016)

    Article  Google Scholar 

  36. Yazdanbakhsh, O.; Dick, S.: A systematic review of complex fuzzy sets and logic. Fuzzy Sets Syst. 338, 1–22 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Alkouri, A.; Salleh, A.: Complex intuitionistic fuzzy sets. In: 2012, Ch. 2nd International Conference on Fundamental and Applied Sciences, vol. 1482, pp. 464–470 (2012)

  38. Alkouri, A.U.M.; Salleh, A.R.: Complex Atanassov’s intuitionistic fuzzy relation. Abstract Appl. Anal. 2013, Article ID 287382 (2013)

  39. Kumar, T.; Bajaj, R.K.: On complex intuitionistic fuzzy soft sets with distance measures and entropies. J. Math. 2014, Article ID 972198 (2014)

  40. Rani, D.; Garg, H.: Distance measures between the complex intuitionistic fuzzy sets and its applications to the decision-making process. Int. J. Uncertain. Quantif. 7(5), 423–439 (2017)

    Article  MathSciNet  Google Scholar 

  41. Thirunavukarasu, P.; Suresh, R.; Ashokkumar, V.: Theory of complex fuzzy soft set and its applications. Int. J. Innov. Res. Sci. Technol. 3(10), 13–18 (2017)

    Google Scholar 

  42. Garg, H.; Rani, D.: A robust correlation coefficient measure of complex intuitionistic fuzzy sets and their applications in decision-making. Appl. Intell. 49(2), 496–512 (2019)

    Article  Google Scholar 

  43. Quran, A.A.; Hassan, N.: The complex neutrosophic soft expert set and its application in decision making. J. Intell. Fuzzy Syst. 34, 569–582 (2018)

    Article  Google Scholar 

  44. Rani, D.; Garg, H.: Complex intuitionistic fuzzy power aggregation operators and their applications in multi-criteria decision-making. Expert Syst. 35(6), e12325 (2018). https://doi.org/10.1111/exsy.12325

    Article  Google Scholar 

  45. Garg, H.; Rani, D.: Some generalized complex intuitionistic fuzzy aggregation operators and their application to multicriteria decision-making process. Arab. J. Sci. Eng. 44(3), 2679–2698 (2019)

    Article  Google Scholar 

  46. Garg, H.; Rani, D.: Complex interval-valued intuitionistic fuzzy sets and their aggregation operators. Fundam. Inf. 164(1), 61–101 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Singh, S.; Garg, H.: Symmetric triangular interval type-2 intuitionistic fuzzy sets with their applications in multi criteria decision making. Symmetry 10(9), 401 (2018)

    Article  MATH  Google Scholar 

  48. Garg, H.; Nancy, : Algorithms for possibility linguistic single-valued neutrosophic decision-making based on COPRAS and aggregation operators with new information measures. Measurement 138, 278–290 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Garg.

Appendix

Appendix

Proof of Theorem 1

Proof

The first part of the result follows from Definition 7. To validate Eq. (7), we use the principle of mathematical induction (PMI) on n.

Step 1:

For \(n=2\), we have \(\mathcal {A}_1=\Big (\big (\zeta _1,w_{\zeta _1}\big ),\big (\vartheta _1,w_{\vartheta _1}\big )\Big )\) and \(\mathcal {A}_2=\Big (\big (\zeta _2,w_{\zeta _2}\big ),\big (\vartheta _2,w_{\vartheta _2}\big )\Big )\). Thus, by the operation of CIFNs, we get

$$\begin{aligned}&\xi _1\mathcal {A}_1\\&\quad =\left( \left( 1-\big (1-\zeta _1 \big )^{\xi _1} , 1-\left( 1-w_{\zeta _1}\right) ^{\xi _1} \right) , \right. \\&\qquad \left. \left( \big (\vartheta _1\big )^{\xi _1}, \big (w_{\vartheta _1}\big )^{\xi _1} \right) \right) \\&\xi _2\mathcal {A}_2\\&\quad =\left( \left( 1-\big (1-\zeta _2 \big )^{\xi _2} , 1-\left( 1-w_{\zeta _2}\right) ^{\xi _2} \right) , \right. \\&\qquad \left. \left( \big (\vartheta _2\big )^{\xi _2}, \big (w_{\vartheta _2}\big )^{\xi _2} \right) \right) \end{aligned}$$

and

$$\begin{aligned}&\text {CIFWA}(\mathcal {A}_1, \mathcal {A}_2) \\&\quad = \xi _1 \mathcal {A}_1 \oplus \xi _2 \mathcal {A}_2 \\&\quad =\left( \left( 1-\big (1-\zeta _1 \big )^{\xi _1} , 1-\left( 1-w_{\zeta _1} \right) ^{\xi _1} \right) ,\right. \\&\qquad \left. \left( \big (\vartheta _1\big )^{\xi _1}, \big (w_{\vartheta _1}\big )^{\xi _1} \right) \right) \\&\qquad \oplus \left( \left( 1-\big (1-\zeta _2 \big )^{\xi _2} , 1-\left( 1-w_{\zeta _2}\right) ^{\xi _2} \right) , \right. \\&\qquad \left. \left( \big (\vartheta _2\big )^{\xi _2}, \big (w_{\vartheta _2}\big )^{\xi _2} \right) \right) \\&\quad = \left( \left( 1-\prod \limits _{j=1}^2 \big (1-\zeta _j \big )^{\xi _j} , 1-\prod \limits _{j=1}^2 \left( 1-w_{\zeta _j}\right) ^{\xi _j} \right) , \right. \\&\qquad \left. \left( \prod \limits _{j=1}^2 \big (\vartheta _j\big )^{\xi _j}, \prod \limits _{j=1}^2 \big (w_{\vartheta _j}\big )^{\xi _j} \right) \right) \end{aligned}$$

Thus, result is true.

Step 2:

Suppose that result holds for \(n=m>2\), then

$$\begin{aligned}&\text {CIFWA}(\mathcal {A}_1, \mathcal {A}_2, \ldots ,\mathcal {A}_m) \\&\quad =\left( \left( 1-\prod \limits _{j=1}^m \big (1-\zeta _j \big )^{\xi _j}, 1-\prod \limits _{j=1}^m \big (1-w_{\zeta _j} \big )^{\xi _j} \right) , \right. \\&\qquad \left. \left( \prod \limits _{j=1}^m \big (\vartheta _j\big )^{\xi _j}, \prod \limits _{j=1}^m \big (w_{\vartheta _j}\big )^{\xi _j} \right) \right) . \end{aligned}$$

Further, for \(n=m+1\), we have

$$\begin{aligned}&\text {CIFWA}(\mathcal {A}_1, \mathcal {A}_2, \ldots ,\mathcal {A}_{m+1}) \\&\quad = \text {CIFWA}(\mathcal {A}_1, \mathcal {A}_2, \ldots ,\mathcal {A}_m) \oplus \xi _{m+1}\mathcal {A}_{m+1} \\&\quad = \left( \left( 1-\prod \limits _{j=1}^m \big (1-\zeta _j \big )^{\xi _j}, 1-\prod \limits _{j=1}^m \big (1-w_{\zeta _j} \big )^{\xi _j}\right) ,\right. \\&\qquad \left. \left( \prod \limits _{j=1}^m \big (\vartheta _j\big )^{\xi _j}, \prod \limits _{j=1}^m \big (w_{\vartheta _j}\big )^{\xi _j} \right) \right) \\&\qquad \oplus \left( \left( 1-\big (1-\zeta _{m+1} \big )^{\xi _{m+1}}, 1-\big (1-w_{\zeta _{m+1}} \big )^{\xi _{m+1}}\right) , \right. \\&\qquad \left. \left( \big (\vartheta _{m+1}\big )^{\xi _{m+1}}, \big (w_{\vartheta _{m+1}}\big )^{\xi _{m+1}}\right) \right) \\&\quad = \left( \left( 1-\prod \limits _{j=1}^{m+1} \big (1-\zeta _j \big )^{\xi _j}, 1-\prod \limits _{j=1}^{m+1} \big (1-w_{\zeta _j} \big )^{\xi _j} \right) , \right. \\&\qquad \left. \left( \prod \limits _{j=1}^{m+1} \big (\vartheta _j\big )^{\xi _j}, \prod \limits _{j=1}^{m+1} \big (w_{\vartheta _j}\big )^{\xi _j}\right) \right) \end{aligned}$$

which is true for \(n=m+1\). Therefore, by the PMI, result holds \(\forall n\in \mathbb {Z}^+\).

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, H., Rani, D. Robust Averaging–Geometric Aggregation Operators for Complex Intuitionistic Fuzzy Sets and Their Applications to MCDM Process. Arab J Sci Eng 45, 2017–2033 (2020). https://doi.org/10.1007/s13369-019-03925-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03925-4

Keywords

Navigation