Skip to main content

Advertisement

Log in

Improvement of Mechanical Properties of 2024 AA by Reinforcing Yttrium and Processing Through Spark Plasma Sintering

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The need for developing new methods to fabricate metal matrix composites is a never-ending process, which drove to the development of more facilitated fabricating methods like field-assisted sintering, etc. The main objective of the present experimental study is to develop aluminium 2024 alloy-based metal matrix composites by very little amounts of yttrium reinforcement through field-assisted sintering also called as spark plasma sintering (SPS) and to analyse the relationship between the mechanical properties and corresponding microstructure. Composite samples consisting of aluminium 2024 alloy matrix and yttrium reinforcement, starting from 0.1 to 0.5% by weight, are developed through SPS. Computerized Vickers testing machine is used to determine the hardness of the composite samples. The metallurgical characterization of the composite samples is assessed by optical microscopy, scanning electron microscopy and X-ray diffraction. To compare the influence of yttrium on the composite samples developed, pure 2024 aluminium alloy sample is also sintered. It is found that an optimum amount of yttrium reinforcement (0.3 wt%) creates favourable conditions for strengthening mechanisms to achieve peak properties. Then the properties tend to decrease gradually when yttrium content is increased beyond 0.3% by weight. The highest hardness, ultimate tensile strength and yield strength are found to be 114 HV, 388 and 343 MPa, respectively, with 18.4% elongation in the composite reinforced with 0.3 wt% yttrium. The mechanical properties are in close agreement with the microstructures and grain sizes. High density and improved tensile properties are achieved in the present composites developed through spark plasma sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Vojtich, D.: Challenges for research and development of new Aluminium alloys. Metalurgija 49(3), 181–185 (2010)

    Google Scholar 

  2. Ehsan, G.; Masoud, A.; Morteza, N.; Touradj, E.: Fabrication of magnesium–boron carbide metal matrix composite by powder metallurgy route: comparison between microwave and spark plasma sintering. J. Alloy. Comp. 697, 200–207 (2017)

    Article  Google Scholar 

  3. Ehsan, G.; Rahim, Y.; Ali, R.; Touradj, E.: Microwave sintering of aluminum-ZrB2 composite: focusing on microstructure and mechanical properties. Mater. Res. 19(4), 765–769 (2016)

    Article  Google Scholar 

  4. Toyofuku, N.; Kuramoto, T.; Imai, T.; Ohyanagi, M.; Munir, Z.A.: Effect of pulsed DC current on neck growth between tungsten wires and tungsten plates during the initial stage of sintering by the spark plasma sintering method. J. Mater. Sci. 47, 2201–2205 (2012)

    Article  Google Scholar 

  5. Saheb, N.; et al.: Spark plasma sintering of metals and metal matrix nano composites: a review. J. Nanomater. 2012, 1–13 (2012)

    Article  Google Scholar 

  6. Singh, L.K.; Bhadauria, A.; Laha, T.: Al-MWCNT nanocomposite synthesized via spark plasma sintering: effect of powder milling and reinforcement reinforcement on sintering kinetics and mechanical properties. JMRTEC 383, 1–10 (2018)

    Google Scholar 

  7. Olivier, G.; Jesus, G.J.; Benjamin, D.; Tobias, K.; Gabi, S.; Jan, R.; Mathias, H.: Field assisted sintering technology/Spark Plasma Sintering: mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830–850 (2014)

    Article  Google Scholar 

  8. Han, G.Q.; Shen, J.H.; Ye, X.X.; Chen, B.; Imai, H.; Kondoh, K.; Du, W.B.: The influence of CNTs on the microstructure and ductility of CNT/Mg composites. Mater. Lett. 181, 300–304 (2016)

    Article  Google Scholar 

  9. Mikell, P.G.: Fundamentals of modern manufacturing: materials processes and systems, 4th edn. Wiley, Hoboken (2010)

    Google Scholar 

  10. Singh, L.K.; Bhadauria, A.; Oraon, A.; Laha, T.: Spark plasma sintered Al-0.5 wt% MWCNT nanocomposite: effect of sintering pressure on the densification behaviour and multi-scale mechanical properties. Dimond Relat. Mater. 91, 144–155 (2019)

    Article  Google Scholar 

  11. Okinaka, N.; Zhang, L.; Akiyama, T.: Thermoelectric properties of rare earth-doped SrTiO3 using combination of combustion synthesis (CS) and spark plasma sintering (SPS). ISIJ Int. 50, 1300–1304 (2010)

    Article  Google Scholar 

  12. Handwerker, C.A.; Cahn, J.W.; Manning, J.R.: Thermodynamics and kinetics of reactions at interfaces in composites. Mater. Sci. Eng. A 126, 173–189 (1990)

    Article  Google Scholar 

  13. Munir, Z.A.; Anselmi, T.U.; Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci. 41, 763–777 (2006)

    Article  Google Scholar 

  14. Ullbrand, J.M.; Co´Rdoba, J.M.; Tamayo, A.J.; Elizalde, M.; Nygren, M.; Molina, A.J.M.; Ode, N.M.: Thermo-mechanical properties of copper-carbon nanofibre composites prepared by spark plasma sintering and hot pressing. Compos. Sci. Technol. 70, 2263–2268 (2010)

    Article  Google Scholar 

  15. Maniere, C.; Pavia, A.; Durand, L.; Chevallier, G.; Claude, B.; et al.: Pulse analysis and electric contact measurements in spark plasma sintering. Electr. Power Syst. Res. 127, 307–313 (2015)

    Article  Google Scholar 

  16. Jain, D.; Reddy, K.M.; Mukhopadhyay, A.; Basu, B.: Achieving uniform microstructure and superior mechanical properties in ultrafine grained TiB2-TiSi2 composites using innovative multi stage spark plasma sintering. Mater. Sci. Eng. A 528, 200–207 (2010)

    Article  Google Scholar 

  17. Hungria, T.; Galy, J.; Castro, A.: Spark plasma sintering a useful technique to the nano-structuration of piezo-ferroelectric materials. Adv. Eng. Mater. 11, 615–631 (2009)

    Article  Google Scholar 

  18. Yar, M.A.; Wahlberg, S.; Bergqvist, H.; Salem, H.G.; Johnsson, M.; Muhammed, M.: Chemically produced nano structured ODS-lanthanum oxide-tungsten composites sintered by spark plasma. J. Nucl. Mater. 408, 129–135 (2011)

    Article  Google Scholar 

  19. Dumont, B.E.; Bourbon, C.; Patoux, S.; Rozier, P.; Dolle, M.: Synthesis by spark plasma sintering: a new way to obtain electrode materials for lithium ion batteries. J. Power Sources 196, 2274–2278 (2011)

    Article  Google Scholar 

  20. Ruixiao, Z.; Yanbo, S.; Kei, A.; Chaoli, M.A.: Optimizing the strength and ductility of spark plasma sintered Al 2024 alloy by conventional thermo-mechanical treatment. Mater. Sci. Eng. A 590, 147–152 (2014)

    Article  Google Scholar 

  21. Kurita, H.; Kwon, H.; Estili, M.; Kawasaki, A.: Multi walled carbon nanotube-aluminium matrix composites prepared by combustion of hetero-agglomeration method, Spark plasma sintering and hot extrusion. Mater. Trans. 52(10), 1960–1965 (2011)

    Article  Google Scholar 

  22. Long, B.D.; Othman, R.; Umemoto, M.; Zuhailawati, H.: Spark plasma sintering of mechanically alloyed in situ copper-niobium carbide composite. J. Alloy. Compos. 505, 510–515 (2010)

    Article  Google Scholar 

  23. Ghasali, E.; Shirvanimoghaddam, K.; Alizadeh, M.; Ebadzadeh, T.: Ultra-low temperature fabrication of vanadium carbide reinforced aluminum nano composite through spark plasma sintering. J. Alloy. Comp. 753, 433–445 (2018)

    Article  Google Scholar 

  24. Ghasali, E.; Sangpour, P.; Jam, A.; Rajaei, H.; Shirvanimoghaddam, K.; Ebadzadeh, T.: Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminium matrix composite. Arch. Civil Mech. Eng. 18, 1042–1054 (2018)

    Article  Google Scholar 

  25. Tan, Z.; Li, Z.; Fan, G.; Kai, X.; Ji, G.; Zhang, J.; Zhang, D.: Fabrication of diamond/aluminium composites by vacuum hot pressing: process optimization and thermal properties. Compos. B 47, 173–180 (2013)

    Article  Google Scholar 

  26. Hulbert, D.M.; Anders, A.; Dudina, D.V.; Andersson, J.; Jiang, D.; Unuvar, C.; Anselmi, T.: The absence of plasma in spark plasma sintering. J. Appl. Phys. 104(3), 033301–033307 (2008)

    Article  Google Scholar 

  27. Eriksson, M.; Shen, Z.; Nygren, M.: Fast densification and deformation of titanium powder. Powder Metall. 48, 231–236 (2005)

    Article  Google Scholar 

  28. Rui, D.L.; Tie, C.Y.; Xiao, J.L.; Ji, W.W.; Hong, W.; Fan, H.Z.; Xiang, Z.: Microstructure evolution and sintering kinetics during spark plasma sintering of Fe and Al blended powder. Trans. Nonferrous Met. Soc. China 27, 1594–1601 (2017)

    Article  Google Scholar 

  29. Lim, Y.P.; Ooi, J.B.; Wang, X.: Microstructure and mechanical properties of gravity-die-cast A356 alloy inoculated with yttrium and Al–Ti–B grain refiner simultaneously. Arch. Foundry Eng. 11(4), 1897–3310 (2011)

    Google Scholar 

  30. Hui, Z.L.; Liang, X.P.; Li, F.F.; Guo, F.F.; Zhou, L.; Zhang, X.M.: Effect of Y content on microstructure and mechanical properties of 2519 aluminium alloy. Trans. Nonferrous Met. Soc. China 17(6), 1194–1198 (2007)

    Article  Google Scholar 

  31. Cooke, R.W.; Kraus, N.P.; Bishop, D.P.: Spark plasma sintering of aluminium powders pre-alloyed with scandium additions. Mater. Sci. Eng. A 657, 71–81 (2016)

    Article  Google Scholar 

  32. Youssef, Y.M.; Dashwood, R.J.; Lee, P.D.: Effect of clustering on particle pushing and solidification behaviour in TiB2 reinforced aluminium PMMCs. Compos. Part A 36, 747–763 (2005)

    Article  Google Scholar 

  33. Balasundar, P.; Narayanasamy, P.; Ramya, S.S.I.; Ramkumar, T.; Senthil, S.: Characterization of Ferric oxide reinforced magnesium nano-composites processed through microwave sintering/powder metallurgy. Int. J. Microstruct. Mech. Prop 13(6), 447–453 (2018). (Tensile specimens are cut from each SPSed)

    Google Scholar 

  34. Narayanasamy, P.; Selvakumar, N.; Balasundar, P.: Effect of weight percentage of TiC on their tribological properties of magnesium composites. Mater. Today Proc. 5(2), 6570–6578 (2018)

    Article  Google Scholar 

  35. Pitchayyapillai, G.; Seenikannan, P.; Balasundar, P.; Narayanasamy, P.: Effect of nano-silver on microstructure, mechanical and tribological properties of cast 6061 aluminum alloy. Trans. Nonferrous Met. Soc. China 27, 2137–2145 (2017). https://doi.org/10.1016/S1003-6326(17)60239-5

    Article  Google Scholar 

  36. Ridvan, Y.; Eugene, A.O.: Consolidation of AL-nano SiC composites by spark plasma sintering. IJMMM 4(2), 119–122 (2016)

    Google Scholar 

  37. Anandajothi, M.; Ramanathan, S.; Ananthi, V.; Narayanasamy, P.: Fabrication and characterization of Ti6Al4 V/TiB2-TiC composites by powder metallurgy method. Rare Metals 36(10), 806–881 (2017)

    Article  Google Scholar 

  38. Selvakumar, M.; Ramkumar, T.; Chandrasekar, P.: Thermal characterization of titanium–titanium boride composites. J. Therm. Anal. Calorim. 1, 1–3 (2019). https://doi.org/10.1007/s10973-019-08014-0

    Google Scholar 

  39. Xiaoyan, S.; Xuemei, L.; Jiuxing, Z.: Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering. J. Am. Ceram. Soc. 89(2), 494–500 (2006)

    Article  Google Scholar 

  40. Miller, N.S.; Humphery, F.J.: Strengthening mechanisms in particulate metal matrix composites. Scr. Mater. 25(1), 33–38 (1991)

    Article  Google Scholar 

  41. Ehsani, R.; Reihani, S.; Morteza, S.: Aging behavior and tensile properties of squeeze cast Al 6061/SiC metal matrix composites. Sci. Iran. 11(4), 392–397 (2004)

    Google Scholar 

  42. Chen, Y.Y.; Si, Y.F.; Kong, F.T.; et al.: Effects of yttrium on microstructures and properties of Ti-17Al-27Nb alloy. Trans. Nonferrous Met. Soc. China 16, 316–320 (2006)

    Article  Google Scholar 

  43. Chen, K.; Zhang, X.; Wang, H.; Zhang, L.; Zhu, J.; Yang, F.; An, L.: Making nano-structured ceramics from micrometer-sized Powders via grain refinement during SPS sintering. J. Am. Ceram. Soc. 91(8), 2475–2480 (2008)

    Article  Google Scholar 

  44. Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect. B 64(9), 747–755 (1951)

    Article  Google Scholar 

  45. Ruidi, L.; Tiechui, Y.; Xiaojun, L.; Kechao, Z.: Enhanced atomic diffusion of Fe–Al diffusion couple during spark plasma sintering. Scr. Mater. 110, 105–108 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Benny Karunakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidyasagar, C.S., Karunakar, D.B. Improvement of Mechanical Properties of 2024 AA by Reinforcing Yttrium and Processing Through Spark Plasma Sintering. Arab J Sci Eng 44, 7859–7873 (2019). https://doi.org/10.1007/s13369-019-03924-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03924-5

Keywords

Navigation