Skip to main content
Log in

Sterilization of Natural Rose Water with Nonthermal Atmospheric Pressure Plasma

  • Research Article -Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, nonthermal atmospheric pressure plasma (NTAPP) method was performed for the sterilization of natural rose water which has a great potential as drug and food additive. NTAPP is applied to rose water containing mesophilic aerobic bacteria, mold and yeast. Experiments were carried out at a voltage of 500 V, a rotating speed of 500 rpm and a plasma power of 100 W. The effect of various plasma treatment times (15, 30 and 45 s) on the inactivation of total viable (aerobic count), mold and yeast was evaluated. Scanning electron microscopy images showed that the microorganism population in rose water was reduced after plasma treatment for 45 s. After 45 s of plasma treatment, inactivation of mesophilic aerobic bacteria, mold and yeast cells are decreased ~ 70%. This sterilization effect may be associated with cell death, which may be attributed to oxidative stress and other damage effects caused by the applied plasma. After sterilization process, the composition of volatile oils obtained from rose water samples was detected using gas chromatography–mass spectrometry. The chemical composition of rose water before and after plasma sterilization was evaluated by Fourier-transform infrared spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marsit, N.M.; Sidney, L.E.; Branch, M.J.; Wilson, S.L.; Hopkinson, A.: Terminal sterilization: conventional methods versus emerging cold atmospheric pressure plasma technology for non-viable biological tissues. Plasma Process Polym. 14(1600134), 1–17 (2017)

    Google Scholar 

  2. Zhang, Q.; Ma, R.; Tian, Y.; Su, B.; Wang, K.; Yu, S.; Zhang, J.; Fang, J.: Sterilization efficiency of a novel electrochemical disinfectant against Staphylococcus aureus. Environ. Sci. Technol. 50(6), 3184–3192 (2016)

    Article  Google Scholar 

  3. Rutala, W.A.; Weber, D.J.: Disinfection and sterilization in health care facilities: an overview and current issues. Infect. Dis. Clin. N. Am. 30, 609–637 (2016)

    Article  Google Scholar 

  4. Colagar, A.H.; Alavi, O.; Motallebi, S.; Sohbatzadeh, E.: Decontamination of Streptococcus pyogenes and Escherichia coli from solid surfaces by singlet and triplet atmospheric pressure plasma jet arrays. Arab. J. Sci. Eng. 41, 2139–2145 (2016)

    Article  Google Scholar 

  5. Akishev, Y.; Grushin, M.; Karalnik, V.; Trushkin, N.; Kholodenko, V.; Chugunov, V.; Kobzev, E.; Zhirkova, N.; Irkhina, I.; Kireev, G.: Atmospheric-pressure, nonthermal plasma sterilization of microorganisms in liquids and on surfaces. Pure Appl. Chem. 80, 1953–1969 (2008)

    Article  Google Scholar 

  6. Kulaga, E.; Ploux, L.; Roucoules, V.: Effect of ageing and sterilization on plasma multilayer system. Polym. Degrad. Stab. 116, 1–13 (2015)

    Article  Google Scholar 

  7. Gucker, S.M.N.: Plasma discharges in gas bubbles in liquid water: breakdown mechanisms and resultant chemistry (Ph.D. Thesis). The University of Michigan, Nuclear Engineering and Radiological Sciences, USA, pp. 271 (2015)

  8. Gils, C.A.J.; Hofmann, S.; Boekema, B.K.H.L.; Brandenburg, R.; Bruggeman, P.J.: Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. J. Phys. D Appl. Phys. 46(175203), 1–14 (2013)

    Google Scholar 

  9. Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julak, J.: Nonthermal plasma—a tool for decontamination and disinfection. Biotechnol. Adv. 33, 1108–1119 (2015)

    Article  Google Scholar 

  10. Liao, X.; Liu, D.; Xiang, Q.; Ahn, J.; Chen, S.; Ye, X.; Ding, T.: Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control 75, 83–91 (2017)

    Article  Google Scholar 

  11. Moreau, M.; Orange, N.; Feuilloley, M.G.J.: Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol. Adv. 26, 610–617 (2008)

    Article  Google Scholar 

  12. Locke, B.R.; Sato, M.; Sunka, P.; Hoffmann, M.R.; Chang, J.S.: Electrohydraulic discharge and nonthermal plasma for water treatment. Ind. Eng. Chem. Res. 45, 882–905 (2006)

    Article  Google Scholar 

  13. Guimin, X.; Guanjun, Z.; Xingmin, S.; Yue, M.; Ning, W.; Yuan, L.: Bacteria inactivation using DBD plasma jet in atmospheric pressure argon. Plasma Sci. Technol. 11, 83–88 (2009)

    Article  Google Scholar 

  14. Lee, J.; Jo, K.; Lim, Y.; Jeon, H.J.; Choe, J.H.; Jo, C.; Jung, S.: The use of atmospheric pressure plasma as a curing process for canned ground ham. Food Chem. 240, 430–436 (2018)

    Article  Google Scholar 

  15. Laroussi, M.: Sterilization of contaminated matter with an atmospheric pressure plasma. IEEE Trans. Plasma Sci. 24, 1188–1191 (1996)

    Article  Google Scholar 

  16. Chandana, L.; Sangeetha, C.J.; Shashidhar, T.; Subrahmanyam, Ch: Non-thermal atmospheric pressure plasma jet for the bacterial inactivation in an aqueous medium. Sci. Total Environ. 640–641, 493–500 (2018)

    Article  Google Scholar 

  17. Korachi, M.; Gurol, C.; Aslan, N.: Atmospheric plasma discharge sterilization effects on whole cell fatty acid profiles of Escherichia coli and Staphylococcus aureus. J. Electrostat. 68, 508–512 (2010)

    Article  Google Scholar 

  18. Xu, Y.; Tian, Y.; Ma, R.; Liu, Q.; Zhang, J.: Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem. 197, 436–444 (2016)

    Article  Google Scholar 

  19. Liu, F.; Sun, P.; Bai, N.; Tian, Y.; Zhou, H.; Wei, S.; Zhou, Y.; Zhang, J.; Zhu, W.; Becker, K.; Fang, J.: Inactivation of bacteria in an aqueous environment by a direct-current, cold-atmospheric-pressure air plasma microjet. Plasma Process. Polym. 7, 231–236 (2010)

    Article  Google Scholar 

  20. Zahid, K.; Ahmed, M.; Khan, F.: Phytochemical screening, antioxidant activity, total phenolic and total flavonoid contents of seven local varieties of Rosa indica L. Nat. Prod. Res. 32, 1239–1243 (2018)

    Article  Google Scholar 

  21. Agarwal, S.G.; Aruna, G.; Kapahi, B.K.; Baleshwar, M.; Thappa, R.K.; Suri, O.P.: Chemical composition of rose water volatiles. J. Essent. Oil Res. 17, 265–267 (2005)

    Article  Google Scholar 

  22. Mahboubifar, M.; Shahabipour, S.; Javidnia, K.: Evaluation of the valuable oxygenated components in Iranian rose water. Int. J. Chemtech Res. 6, 4782–4788 (2014)

    Google Scholar 

  23. Haj, Ammar A.; Lebrihi, A.; Mathieu, F.; Romdhane, M.; Zagrouba, F.: Chemical composition and in vitro antimicrobial and antioxidant activities of Citrus aurantium L. flowers essential oil (Neroli oil). Pak. J. Biol. Sci. 15, 1034–1040 (2012)

    Article  Google Scholar 

  24. Ercisli, S.: Rose (Rosa spp.) germplasm resources of Turkey. Genet. Resour. Crop Evol. 52, 787–795 (2005)

    Article  Google Scholar 

  25. Shimizu, S.; Barczyk, S.; Rettberg, P.; Shimizu, T.; Klaempfl, T.; Zimmermann, J.L.; Hoeschen, T.; Linsmeier, C.; Weber, P.; Morfill, G.E.; Thomas, H.M.: Cold atmospheric plasma—a new technology for spacecraft component decontamination. Planet. Space Sci. 90, 60–71 (2014)

    Article  Google Scholar 

  26. Baydar, H.; Kuleasan, H.; Kara, N.; Secilmis-Canbay, H.; Kineci, S.: The effects of pasteurization, ultraviolet radiation and chemiclal preservatives on microbial spoilage and scent composition of rose water. J. Essent. Oil Bear. Plants 16, 151–160 (2013)

    Article  Google Scholar 

  27. Seçilmiş-Canbay, H.: Effectiveness of liquid–liquid extraction, solid phase extraction, and headspace technique for determination of some volatile water-soluble compounds of rose aromatic water. Int. J. Anal. Chem. 2017, 1–7 (2017)

    Article  Google Scholar 

  28. Ryu, Y.H.; Kim, Y.H.; Lee, J.Y.; Shim, G.B.; Uhm, H.S.; Park, G.; Choi, E.H.: Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma. Plos One 8(6), e66231 (2013)

    Article  Google Scholar 

  29. Han, L.; Patil, S.; Boehm, D.; Milosavljevic, V.; Cullen, P.J.; Bourke, P.: Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microbiol. 82, 450–458 (2016)

    Article  Google Scholar 

  30. Yao, J.; Liu, Y.; Zhan, J.; Li, X.; Zhang, A.; Zhang, K.; Yan, Z.; Cai, S.; Yang, C.; Sand, W.; Dai, Y.; Yang, H.: Study on inactivation of Escherichia coli by double dielectric barrier discharge. IEEE Trans. Plasma Sci. (2018). https://doi.org/10.1109/tps.2018.2837640

    Google Scholar 

  31. Lee, M.H.; Park, B.J.; Jin, S.C.; Kim, D.; Han, I.; Kim, J.; Hyun, S.O.; Chung, K.H.; Par, J.C.: Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure. New J. Phys. 11(115022), 1–11 (2009)

    Google Scholar 

  32. Xiong, Y.; Zhang, Q.; Wandell, R.; Bresch, S.; Wang, H.; Locke, B.R.; Tang, Y.: Synergistic 1,4-dioxane removal by non-thermal plasma followed by biodegradation. Chem. Eng. J. 361, 519–527 (2019)

    Article  Google Scholar 

  33. Fukuda, S., Kawasaki, Y., Izawa, S.: Ferrous chloride and ferrous sulfate improve the fungicidal efficacy of cold atmospheric argon plasma on melanized Aureobasidium pullulans. J. Biosci. Bioeng. (2019). https://doi.org/10.1016/j.jbiosc.2018.12.008

    Google Scholar 

  34. Chandana, L.; Sangeetha, C.J.; Shashidhar, T.; Subrahmanyam, Ch: Non-thermal atmospheric pressure plasma jet for the bacterial inactivation in an aqueous medium. Sci. Total Environ. 640–641, 493–500 (2018)

    Article  Google Scholar 

  35. Maniruzzaman, M.: Investigation of plasma-treated water for plant growth. Deakin University, Doctor Thesis of Philosophy (2018)

  36. Dai, X.J.; Corr, C.S.; Ponraj, S.B.; Maniruzzaman, M.; Ambujakshan, A.T.; Chen, Z.; Kviz, L.; Lovett, R.; Rajmohan, G.D.; de Celis, D.R.; Wright, M.L.; Lamb, P.R.; Krasik, Y.E.; Graves, D.B.; Graham, W.G.; d’Agostino, R.; Wang, X.: Efficient and selectable production of reactive species using a nanosecond pulsed discharge in gas bubbles in liquid. Plasma Process. Polym. 13, 306–310 (2016)

    Article  Google Scholar 

  37. Yang, L.; Chen, J.; Gao, J.: Low temperature argon plasma sterilization effect on Pseudomonas aeruginosa and its mechanisms. J. Electrostat. 67, 646–651 (2009)

    Article  Google Scholar 

  38. Boudam, M.K.; Moisan, M.; Saoudi, B.; Popovici, C.; Gherardi, N.; Massines, F.: Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J. Phys. D Appl. Phys. 39, 3494–3507 (2006)

    Article  Google Scholar 

  39. Pérez-López, A.J.; Saura, D.; Lorente, J.; Carbonell-Barrachina, A.A.: Limonene, linalool, α-terpineol, and terpinen-4-ol as quality control parameters in mandarin juice processing. Eur. Food Res. Technol. 222, 281–285 (2006)

    Article  Google Scholar 

  40. Alves Filho, E.G.; Rodrigues, T.H.S.; Fernandes, F.A.N.; de Brito, E.S.; Cullen, P.J.; Frias, J.M.; Bourke, P.; Cavalcante, R.S.; Almeida, F.D.L.; Rodrigues, S.: An untargeted chemometric evaluation of plasma and ozone processing effect on volatile compounds in orange juice. Innov. Food Sci. Emerg. Technol. (2017). https://doi.org/10.1016/j.ifset.2017.10.001

    Google Scholar 

  41. Bayrak, A.; Akgül, A.: Volatile oil composition of Turkish rose (Rosa damascena). J. Sci. Food Agric. 64, 441–448 (1994)

    Article  Google Scholar 

  42. Canbay, H.S.; Bardakçı, B.: Determination of fatty acid, C, H, N and trace element composition in grape seed by GC/MS, FTIR, elemental analyzer and ICP/OES. SDU J. Sci. (E-Journal) 6(2), 140–148 (2011)

    Google Scholar 

  43. Haghighi, B.; Tabrizi, M.A.: Green-synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications. RSC Adv. 3, 13365–13371 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Suleyman Demirel University Scientific Research Project Coordination Unit (Project No: 4765-YL2-16) for their financial support of this study. We would also like to thank the outstanding service in the plasma system provided by PlazmaTek Company (Isparta, Turkey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysegul Uygun Oksuz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogan, C., Uygun Oksuz, A., Nohut Maslakci, N. et al. Sterilization of Natural Rose Water with Nonthermal Atmospheric Pressure Plasma. Arab J Sci Eng 44, 6403–6410 (2019). https://doi.org/10.1007/s13369-019-03921-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03921-8

Keywords

Navigation