Skip to main content
Log in

Development of New Solid Insulating Material with Aid of Alkyl Phenolic Resin for a Liquid-Immersed Transformer

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The continuous increase in power requirement has created new challenges for insulating materials. In a construction of a power transformer, the paper insulation is most vulnerable to power leakage. The condition of the insulation system in a power transformer directly affects its stability and reliability. The emergence of nanodielectrics for specialized high-voltage applications sparked off a variety of research activities, which proved that nanocomposites are capable of improving the electrical, thermal and mechanical properties of polymers. This paper primarily investigates the effect of layering of alkyl phenolic resin nanocomposite onto a basic cellulose paper by increasing resin’s content from 3.0–7.0%. Assessment is done to examine various physical, mechanical and dielectric properties. Analysis of the results indicates that alkyl phenolic resin-modified paper has uncommon properties that can become a promising replacement against basic cellulose paper. Also, the modification of the phenolic resin with the addition of silicon carbide (nSiC) nanoparticles (nanofillers) can greatly enhance the mechanical flexural strength, visco-elastic and thermal stability of the composite. The paper outlines the characteristics and properties of modified insulating paper in comparison with other existing unmodified insulating papers such as basic kraft paper, electra paper, nomex paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kanakambaran, S.; Sarathi, R.; Srinivasan, B.: Identification and localization of partial discharge in transformer insulation adopting cross recurrence pot analysis of acoustic signals detected using fiber bragg gratings. IEEE Trans. Dielectr. Electr. Insul. 24(3), 1773–1780 (2017)

    Article  Google Scholar 

  2. Tuncer, E.; Polizos, G.; Sauers, I.; James, D.R.: Electrical insulation paper and its physical properties at cryogenic temperatures. IEEE Trans. Appl. Supercond. 21(3), 1438–1440 (2006)

    Article  Google Scholar 

  3. Jindal, V.; Singh, J.: Looking at the transformer kraft paper. Electr. India Mag. 56(6), 64–68 (2016)

    Google Scholar 

  4. Morgan, V.T.: Effects of frequency, temperature, compression, and air pressure on the dielectric properties of a multilayer stack of dry kraft paper. IEEE Trans. Dielectr. Electr. Insul. 5(1), 125–131 (1998)

    Article  Google Scholar 

  5. Madavan, R.; Balaraman, S.: Failure analysis of transformer liquid–solid insulation system under selective environmental conditions using Weibull statistics method. Eng. Fail. Anal. 65, 26–38 (2016)

    Article  Google Scholar 

  6. Chakravorti, S.; Dey, D.; Chatterjee, B.: Recent Trends in the Condition Monitoring of Transformers. Springer, London (2013)

    Book  Google Scholar 

  7. Grabowski, C.A.; Fillery, S.P.; Westing, N.M.; Chi, C.; Meth, J.S.; Durstock, M.F.; Vaia, R.A.: Dielectric breakdown in silica-amorphous polymer nano-composite films: the role of the polymer matrix. ACS Appl. Mater. Interfaces. 5(12), 5486–5492 (2013)

    Article  Google Scholar 

  8. Mutiso, M.; Winey, K.I.: Electrical properties of polymer nano-composites containing rod-like nano-fillers. Prog. Polym. Sci. 40, 63–84 (2015)

    Article  Google Scholar 

  9. Contreras, J.E.; Rodriguez, E.A.; Taha-Tijerina, J.: Nanotechnology applications for electrical transformers—a review. Electr. Power Syst. Res. 143, 573–584 (2017)

    Article  Google Scholar 

  10. Fothergill, J.; Nelson, J.K.; Fu, M.: “Dielectric properties of epoxy nano-composites containing TiO2, Al2O3 and ZnO fillers, pp. 406–409. IEEE Conf. Electr. Insul. Dielectr. Phenom., CEIDP (2004)

    Google Scholar 

  11. Hunag, X.; Jiang, P.; Tanaka, T.: A review of dielectric polymer composites with high thermal conductivity. IEEE Electr. Insul. Mag. 27(4), 8–16 (2011)

    Article  Google Scholar 

  12. Montanari, G.C.; Fabiani, D.; Palmieri, F.; Kaempfer, D.K.; Thomann, R.; Multhaupt, R.: Modification of electrical properties and performance of EVA and PP insulation through nanostructure by organophilic silicates. IEEE Trans. Dielectr. Electr. Insul. 11, 754–762 (2004)

    Article  Google Scholar 

  13. Tanaka, Toshikatsu: Dielectric nano composites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 12(5), 914–928 (2005)

    Article  Google Scholar 

  14. Zhou, T.; Wang, X.; Cheng, P.; Wang, T.; Xiong, D.; Wang, X.: Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles. Express Polym. Lett. 7(7), 585–594 (2013)

    Article  Google Scholar 

  15. Jin, H.; Morshuis, P.; Rodrigo Mor, A.; Andritsch, T.: An investigation into dynamics of partial discharge propagation in mineral oil based nanofluids, pp. 1–4. IEEE Int. Conf. Liq. Dielectr., Slovenia (2014)

    Google Scholar 

  16. Hoffmann, C; Jenau, F.: On surface degradation mechanisms of epoxy filled with silica nanoparticles caused by partial discharges. In: 10th IEEE International Conference on Solid Dielectrics (ICSD), pp. 1–4. (2010)

  17. Hollertz, R.; Pilois, C.; Ariza, D.; Wagberg, L.: Dielectric Response of Kraft Paper from fibres modified by Silica nanoparticles. In: Proceedings of Annual Electrical Insulation and Dielectric Phenomena Conference Report, pp. 459–462. (2015)

  18. Meichsner, C.; Clark, T.; Groeppel, P.: Protective layer of Al2O3 nano-composites and surface composition after electrical stress. IEEE Trans. Dielectr. Electr. Insul. 22(5), 2944–2950 (2015)

    Article  Google Scholar 

  19. Gao, F.; Xiang, M.; Liao, R.; Zhengyu, X.; Wang, J.: The experimental investigation on space charge distribution of cellulose insulation paper modified with alumina Nanoparticles. In: Proceedings of Condition Monitoring and Diagnosis Conferenence, pp. 757–760. (2016)

  20. Liao, R.; Chen, L.; Weiqiang, W.; Liang, N.; Yang, L.: Insulating properties of insulation paper modified by nano-Al2O3 for power transformer. J. Electr. Power Sci. Technol. 29(10401), 3–7 (2014)

    Google Scholar 

  21. Atkison, G.L.; Thomas, W.R.: An epoxy-paper insulation system for high voltage applications. IEEE Trans. Electr. Insul. EI-2(1), 18–24 (1967)

    Article  Google Scholar 

  22. Saha, D.; Anisimov, A.G.; Groves, R.M.; Tsekmes, I.A.; Morshuis, P.H.F.; Kochetov, R.: Epoxy-hBN nano-composites: a study on space charge behavior and effects upon material. IEEE Trans. Dielectr. Electr. Insul. 24(3), 1718–1725 (2017)

    Article  Google Scholar 

  23. Tuncer, E.; Cantoni, C.; Karren, L.; More, D.; James, R.; Polizos, G.; Sauers, I.; Ellis, A.R.: Breakdown properties of epoxy nanodielectric. In: Proceedings of Annual Electrical Insulation and Dielectric Phenomena Conference Report, pp. 459–462. (2010)

  24. Yongsen, H.; Shengtao, L.; Daomin, M.: Nonlinear conduction and surface potential decay of epoxy/SiC nano-composites. IEEE Trans. Dielectr. Electr. Insul. 24(5), 3154–3164 (2017)

    Article  Google Scholar 

  25. Yin Huang, Y.; Daomin, M.; Shengtao, L.; Wang, X.; Shengjun, L.: Dielectric relaxation and carrier transport in epoxy resin and its micro-composite. IEEE Trans. Dielectr. Electr. Insul. 24(5), 3083–3091 (2017)

    Article  Google Scholar 

  26. Jamaludin, F.A.; Ab-Kadir, M.Z.A.; Izadi, M.; Azis, N.; Jasni, J.; Abd Rahman, M.S.: Considering the effects of RTV coating to improve electrical insulation against lightning. Presented at 33rd lightning protection conference, Estoril, Portugal, 2016

  27. Thyssen, A.; Almdal, K.; Thomsen, E.V.: Electret stability related to the crystallinity in polypropylene. IEEE Trans. Dielectr. Electr. Insul. 24(5), 3038–3046 (2017)

    Article  Google Scholar 

  28. Miyoshi, A.: A new additive for improving the thermal aging characteristics of kraft insulating paper. IEEE Trans. Electr. Insul. 10(1), 13–17 (1975)

    Article  Google Scholar 

  29. Kang, B.S.; Levit, M.R.; Marek, R.P.; Wicks, R.C.; Provost, R.L.: Development of a new solid insulation for liquid immersed transformers. In: Proceeding of Electrical Insulation Conference, Philadelphia, Pennsylvania, USA, pp. 344–347. (2014)

  30. Tang, C.; Zhang, S.; Li, X.; Xiong, B.; Xie, J.: Experimental analysis and molecular simulation of the thermal aging of transformer insulating paper. IEEE Trans. Dielectr. Electr. Insul. 22(6), 3608–3616 (2015)

    Article  Google Scholar 

  31. Tuncer, E.; Sauers, I.: Nano-dielectric system for cryogenic applications: barium titanate filled polyvinyl alcohol. IEEE Trans. Dielectr. Electr. Insul. 15(1), 236–242 (2006)

    Article  Google Scholar 

  32. Arroyo-Fernandez, O.H.; Fofana, I.; Jalbert, J.; Rodriguez, E.; Rodriguez, L.B.; Ryadi, M.: Assessing changes in thermally upgraded papers with different nitrogen contents under accelerated aging. IEEE Trans. Dielectr. Electr. Insul. 24(3), 1829–1839 (2017)

    Article  Google Scholar 

  33. Prevost, T.A.: Thermally upgraded insulation in transformers. In: Proceeding of Electrical Insulation Conference and Electrical Manufacturing Expo, pp. 120–125. (2005)

  34. Shuhua, Q.; Chunlua, L.; Ying, H.: Preparation of SiC hybrid phenolic resin composites. In: 57th International Astronautical Congress, pp. 2–6. (2006)

  35. Gardziella, A.; Pilato, L.A.; Knop, A.: Phenolic Resins: Chemistry, Applications, Standardization, Safety and Ecology, p. 566. Springer, Berlin (2013)

    Google Scholar 

  36. Pizzi, A.; Ibeh, C.C.: Phenol–Formaldehydes. Handbook of Thermoset Plastics, pp. 13–44. William Andrew Publishing, New York (2014)

    Book  Google Scholar 

  37. Parvin, P.; Shoursheini, S.Z.; Khalilinejad, F.; Bavali, A.; Gosha, M.M.; Mansouri, B.: Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser. Opt. Lasers Eng. 50(11), 1672–1676 (2012)

    Article  Google Scholar 

  38. Prevost, T.D.; Oommen, T.V.: Cellulose insulation in oil filled power transformer: part-1—history and development. IEEE Electr. Insul. Mag. 22(1), 28–35 (2006)

    Article  Google Scholar 

  39. Emsley, A.M.; Stevens, G.C.: Review of chemical indicators of degradation of cellulosic electrical paper insulation in oil-filled transformers. IEE Proc.: Sci. Meas. Technol. 141(5), 324–334 (1994)

    Google Scholar 

  40. Method of sampling and test for paper and allied product, Indian Standard, ISO: 1060 (Part-1)-1966, 12th Reprint (2008)

  41. Alamri, H.; Low, I.M.: Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites. Mater. Des. 42, 214–222 (2012)

    Article  Google Scholar 

  42. Water Absorptiveness of Sized (Non-Bibulous), Paper, Paperboard, and Corrugated Fiberboard (Cobb Test), Tappi Standards, T-441 om-09, pp. 1–8. (2013)

  43. Calva, P.A.; Díaz, A.I.; Gutierrez, H.M.: Fillers in electrical papers for power transformers. Adv. Mater. Res. 875–877, 335–340 (2014)

    Article  Google Scholar 

  44. Diaham, S.; Zelmat, S.; Locatelli, M.L.; Dinculescu, S.; Decup, M.; Lebey, T.: Dielectric breakdown of polyimide films: area, thickness and temperature dependence. IEEE Trans. Dielectr. Electr. Insul. 17, 18–27 (2010)

    Article  Google Scholar 

  45. Kim, H.K.; Shi, F.G.: Thickness dependent dielectric strength of a low-permittivity dielectric film. IEEE Trans. Dielectr. Electr. Insul. 8, 248–252 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mahashakti Energy Pvt. Ltd., Bathinda, Punjab, India, for providing raw material and Electra Paper Pvt. Ltd., India, for providing their facilities and valuable assistance in conducting the experiments. The authors also thank I.K.G. Punjab Technical University, Kapurthala, for providing a fruitful environment to complete this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishavdeep Jindal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, V., Singh, J. Development of New Solid Insulating Material with Aid of Alkyl Phenolic Resin for a Liquid-Immersed Transformer. Arab J Sci Eng 45, 1357–1365 (2020). https://doi.org/10.1007/s13369-019-03919-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03919-2

Keywords

Navigation