Skip to main content
Log in

Evaluation of Multilayer Thin Film Coatings for Solar Thermal Applications

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The multilayer thin film coatings are one of the proven technologies for improvement in solar thermal and optical applications. In current solar thermal and optical systems, multilayer thin film coatings find application in many functions such as photovoltaics, heat exchangers, filters, sensor technologies, laser windows, mirrors, reflectors and optics for digital projections. The solar absorptance and thermal emittance of the multilayer thin film coatings are one of the leading factors for its applicability in said areas. The processing conditions, morphology and surface finish influence the solar absorptance and thermal emittance behavior of multilayer thin film coating. Therefore, emphasis has given in this paper to deposit multilayer thin film coatings with an increased solar absorptance and decreased thermal emittance to improve its applicability in solar thermal applications. Multilayer thin film coatings (Al2O3/Ni/W–Al2O3/W) were deposited using DC/RF magnetron sputtering on the stainless steel substrate to improve its applicability in solar thermal receiver tube for power generation. The performance of this multilayer thin film was investigated by measuring the absorptance and emittance using 410 Solar and ET 100 in the solar spectrum region at a variable incident angle from 20° to 60°. The effect of optical properties, microstructure and morphology of the multilayer thin film coatings was also investigated. The maximum absorptance 0.92 and minimum emittance < 0.1 were observed in deposited multilayer thin film coating with the combination of Tungsten, Al2O3 and Nickel, respectively. The observed values indicate the practical applicability of the multilayer coatings in medium-to-high-temperature range of solar thermal receiver tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DC:

Direct current

RF:

Radio frequency

Ni:

Nickel

W:

Tungsten

Mo:

Molybdenum

V:

Vanadium

Al2O3 :

Aluminum oxide (alumina)

SiO2 :

Silicon dioxide (silica)

AlN:

Aluminum nitride

IR:

Infrared

AR:

Anti-reflection

FESEM:

Field emission scanning electron microscope

SEM:

Scanning electron microscope

EDAX:

Energy dispersive X-ray

AFM:

Atomic force microscopy

mm:

Millimeter

sccm:

Standard cubic centimeters per minute

nm:

Nanometer

μm:

Micrometer

keV:

Kiloelectron volt

W:

Watt

GPa:

Giga pascal

α :

Solar absorptance

ε :

Thermal emittance

References

  1. Joly, M.; Antonetti, Y.; Python, M.; Lazo, M.A.G.; Gascou, T.; Hessler-Wyser, A.; Scartezzini, J.L.; Schuler, A.: Selective solar absorber coatings on receiver tubes for CSP—energy-efficient production process by sol–gel dip-coating and subsequent induction heating. Energy Procedia 57, 487–496 (2014)

    Article  Google Scholar 

  2. Woollam, J.A.; McGahan, W.A.; Johs, B.: Spectroscopic ellipsometry studies of indium tin oxide and other flat panel display multilayer materials. Thin Solid Films 241, 44–46 (1994)

    Article  Google Scholar 

  3. Abdolah, A.; Ziabari, Z.; Khatibani, A.B.: Optical properties and thermal stability of solar selective absorbers based on Co–Al2O3 cermets. Chin. J. Phys. 55, 876–885 (2017)

    Article  Google Scholar 

  4. Antonaia, A.; Castaldo, A.; Addonizio, M.L.; Esposito, S.: Stability of W–Al2O3 cermet based solar coating for receiver tube operating at high temperature. Sol. Energy Mater. Sol. Cells 94, 1604–1611 (2010)

    Article  Google Scholar 

  5. Singh, M.M.; Vijay, G.; Krupashankara, M.S.; Kulkarni, R.S.: Effect of argon gas low rate on the optical and mechanical properties of sputtered tungsten thin film coatings. Mater. Sci. Eng. 149, 1–8 (2016)

    Google Scholar 

  6. Gao, X.H.; Guo, Z.M.; Geng, Q.F.; Ma, P.J.: Enhanced absorptance of surface-textured tungsten thin film for solar absorber. J. Surf. Eng. 32, 840–845 (2016)

    Article  Google Scholar 

  7. Reddya, A.M.; Reddy, A.S.; Reddy, P.S.: Annealing effect on the physical properties of dc reactive magnetron sputtered nickel oxide thin films. Phys. Procedia 49, 9–14 (2013)

    Article  Google Scholar 

  8. Lo, C.F.; Macdonald, P.; Draper, D.; Gilman, P.: Influence of tungsten sputtering target density on physical vapour deposition thin film properties. J. Electron. Mater. 34, 12–16 (2005)

    Article  Google Scholar 

  9. Harish, B.C.; Sibin, K.P.; John, S.: Control of Infrared emittance of stainless steel using sputtered tungsten thin films for solar thermal power applications. Sol. Energy Mater. Sol. Cells 133, 921–927 (2015)

    Google Scholar 

  10. Arancibia-Bulnes, C.A.; Estrada, C.A.; Ruiz-Suarez, J.C.: Solar absorptance and thermal emittance of cermets with large particles. J. Appl. Phys. 33, 197–206 (2014)

    Google Scholar 

  11. Wackelgard, E.; Mattson, A.; Bartali, R.; Gerosa, R.: Development of W–SiO2 and Nb–TiO2 solar absorber coatings for combined heat and power systems at intermediate operation temperatureS. Sol. Energy Mater. Sol. Cells 133, 180–193 (2015)

    Article  Google Scholar 

  12. Khan, A.F.: Effect of annealing on structural optical and electrical properties and SnO2, TiO2, Ge and multilayer TiO2–Ge thin films prepared by physical deposition technique. Ph.D Thesis, Pakistan Institute of Engineering and Applied Sciences (2010)

  13. Kheraj, V.A.; Panchal, C.J.; Desai, M.S.; Pramana, V.P.: Simulation of reflectivity spectrum for non-absorbing multilayer optical thin films. J. Phys. 72, 1011–1022 (2009)

    Google Scholar 

  14. Richter, F.; Kupfer, H.; Schlott, P.; Gessner, T.; Kaufmann, C.: Optical properties and mechanical stress in SiO2/Nb2O5 multilayers. Thin Solid Films 389, 278–283 (2001)

    Article  Google Scholar 

  15. Lu, Y.M.; Hwang, W.S.; Yang, J.S.; Chuang, H.C.: Properties of nickel oxide thin films By RF reactive magnetron sputtering. Thin Solid Films 420–421, 54–61 (2002)

    Article  Google Scholar 

  16. Yoshimura, K.; Miki, T.; Tanemura, S.: Nickel oxide electrochromic thin films prepared by reactive DC magnetron sputtering. J. Appl. Phys. 34, 620–627 (2013)

    Google Scholar 

  17. Kuppusami, P.; Balakrishnan, G.; Mishra, M.: Microstructure and optical properties of nano multilayers of CeO2/ZrO2 and Gd2O3/CeO2 prepared by pulsed laser deposition. J. Nano Sci. Nano Technol. 16, 1–11 (2016)

    Google Scholar 

  18. Leary, C.O.: Design, construction and characterization of a variable balance magnetron sputtering system. Dublin City Univ. 1, 67–85 (1999)

    Google Scholar 

  19. Petrova, I.; Frederick, S.: Microstructural evolution during film growth. J. Vac. Sci. 21(50), 117–128 (2003)

    Article  Google Scholar 

  20. Liou, Y.-C.; Fu-Hsing, L.: Air-based sputtering deposition of TiNxOy films for solar selective absorber coatings applications. Thin Solid Film 660, 733–740 (2018)

    Article  Google Scholar 

  21. Sathiaraj, T.S.: Solar selective properties of copper-aluminium composite film. Indian J. Pure Appl. Phys. 45, 613–617 (2007)

    Google Scholar 

  22. Wäckelgård, E.; Mattsson, A.; Bartali, R.; Gerosa, R.; Gottardi, G.; Gustavsson, F.; Laidani, N.; Micheli, V.; Primetzhofer, D.; Rivolta, B.: Development of W–SiO2 and Nb–TiO2 solar absorber coatings for combined heat and power systems at intermediate operation temperatures. Sol. Energy Mater. Sol. Cells 133, 180–193 (2015)

    Article  Google Scholar 

  23. Du, M.; Hao, L.; Mi, Jing; Fang, L.; Liu, Xiaopeng; Jiang, Lijun; Wang, Shumao: Optimization design of Ti0.5Al0.5N/Ti0.25Al0.75N/AlN coating used for solar selective applications. Sol. Energy Mater. Sol. Cells 95, 1193–1196 (2011)

    Article  Google Scholar 

  24. Macias, J.D., Herrera-Zamora, D.M., Lizama-Tzec, F.I., Bante-Guerra, J., Arés-Muzio, O.E., Oskam, G., Rubio, HR.-P., Alvarado-Gil, J.J., Arancibia-Bulnes, C., Ramos-Sánchez, V., Villafán-Vidales, H.I.: Optical and thermal properties of selective absorber coatings under CSP conditions, Solar PACES. In: AIP Conference Proceedings, vol. 1850. https://doi.org/10.1063/1.4984492 (2016)

  25. Sibin, K.P.; John, S.; Barshilia, H.C.: Control of thermal emittance of 1 stainless steel using sputtered tungsten thin films for solar thermal power applications. Sol. Energy Mater. Sol. Cells 133, 01–07 (2015)

    Article  Google Scholar 

  26. Wäckelgård, E.; Mattsson, A.; Bartali, R.; Gerosa, R.; Gottardi, G.; Gustavsson, F.; Laidani, N.; Micheli, V.; Primetzhofer, D.; Rivolta, B.: Development of W–SiO2 and Nb–TiO2 solar absorber coatings for combined heat and power systems at intermediate operation temperatures. Sol. Energy Mater. Sol. Cells 133, 180–193 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from management of R.V. College of Engineering, Bangalore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinandan Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muralidhar Singh, M., Kumar, H., Nagesha, K.V. et al. Evaluation of Multilayer Thin Film Coatings for Solar Thermal Applications. Arab J Sci Eng 44, 7789–7797 (2019). https://doi.org/10.1007/s13369-019-03904-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03904-9

Keywords

Navigation