Skip to main content

Advertisement

Log in

Shape Complexity in Metal Extrusion: Definitions, Classification, and Applications

  • Review - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

One of the most important factors that affect quality and productivity in metal extrusion is shape complexity. It is an estimation of how complex an extruded profile (or die cavity) is. It has direct bearing on equipment selection, metal flow, die and tooling design, and critical process parameters. In turn, profile complexity has major impact on die life, energy consumption, cost of manufacturing, material properties, etc. Without proper quantification of shape complexity, it is difficult to predict maximum extrusion pressure needed or to optimize die/tooling or process parameters for improved process efficiency and product quality. The first part of the current paper presents a general classification scheme for extrusion profiles and covers the different definitions and their origins. The later part discusses some applications of shape complexity, such as pressure prediction; evaluation of stress, strain etc.; die design and optimization; product defects; prediction of container and exit temperature; friction and wear in complex dies; failure and life estimation of dies and tools; estimation of manufacturability and cost; and novel extrusion methods for complex profiles. The review concludes by pointing out areas where possible future research can be done. As no comprehensive review of this very important issue is available in the published literature, this paper can be very useful for researchers, academicians, and practitioners in the area of metal extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma, X.: Surface quality of aluminum extrusion products, PhD Thesis. University of Twente, Enschede, Netherlands (2011)

  2. Qamar, S. Z.; Arif, A. F. M.; Sheikh, A. K.: An investigation of shape complexity in metal extrusion. In: Proceedings of the International Conference on Advances in Materials and Processing Technologies AMPT, Dublin, Ireland, July 8–11, pp. 1178–1183 (2003)

  3. Qamar, S.Z.: Shape complexity, metal flow, and dead metal zone in cold extrusion. Mater. Manuf. Processes 25(12), 1454–1461 (2010)

    Article  Google Scholar 

  4. Bauser, M.; Sauer, G.; Siegert, K.: Extrusion, 2nd edn. ASM International, Materials Park (2006)

    Google Scholar 

  5. Nieto, J. T.: Feature based costing of extruded parts. PhD Thesis, University of Illinois, Urbana-Champaign (2010)

  6. Qamar, S.Z.: Fracture life prediction and sensitivity analysis for hollow extrusion dies. Fatigue Fract. Eng. Mater. Struct. 38(4), 434–444 (2015)

    Article  Google Scholar 

  7. Kalpakjian, S.; Schmid, S.R.; Musa, H.: Manufacturing Engineering and Technology, 6th edn. Prentice Hall, Pearson (2009)

    Google Scholar 

  8. Groover, M.P.: Fundamentals of Modern Manufacturing: Materials, Processes and Systems, 4th edn. John Wiley & Sons, USA (2010)

    Google Scholar 

  9. Altan, T.; Oh, S.I.; Gegel, H.L.: Metal Forming: Fundamentals and Applications. American Society for Metals, Metals Park (1983)

    Google Scholar 

  10. Arif, A. F. M.; Sheikh, A. K.; Qamar, S. Z.; Al-Fuhaid, K. M.: Modes of die failure and tool complexity in hot extrusion of Al-6063. In: Proceedings of the 16th International Conference on Production Research (ICPR-16), Prague, Czech Republic, July–August (2001)

  11. Laue, K.; Stenger, H.: Extrusion: Processes, Machinery, Tooling. American Society for Metals, Metals Park (1981)

    Google Scholar 

  12. Saha, P.K.: Aluminum Extrusion Technology. ASM International, Materials Park (2000)

    Google Scholar 

  13. Arif, A.F.M.; Sheikh, A.K.; Qamar, S.Z.: A study of die failure mechanisms in aluminum extrusion. J. Mater. Process. Technol. 134(3), 318–328 (2003)

    Article  Google Scholar 

  14. Arif, A.F.M.; Sheikh, A.K.; Qamar, S.Z.; Al-Fuhaid, K.M.: Variation of pressure with ram speed and die profile in hot extrusion of aluminum-6063. Mater. Manuf. Processes 16(5), 701–716 (2001)

    Article  Google Scholar 

  15. Kargin, V.R.; Deryabin, A.Y.: Characteristics of large bars extruding using small extrusion ratio. Key Eng. Mater. 684, 211–217 (2016)

    Article  Google Scholar 

  16. Qamar, S.Z.; Arif, A.F.M.; Sheikh, A.K.: A new definition of shape complexity for metal extrusion. J. Mater. Process. Technol. 155–156, 1734–1739 (2004)

    Article  Google Scholar 

  17. Qamar, S.Z.; Sheikh, A.K.; Arif, A.F.M.; Pervez, T.: Defining shape complexity of extrusion dies: a reliabilistic view. Mater. Manuf. Processes 22(7), 804–810 (2007)

    Article  Google Scholar 

  18. Aluminum Extruders Council: Aluminum Extrusion Manual, 4th edn, p. 200. Aluminum Extruders Council and the Aluminum Association, USA (2018)

    Google Scholar 

  19. The Aluminum Association: Aluminum Standards and Data, p. 211. The Aluminum Association, Arlington (2017)

    Google Scholar 

  20. Semiatin, S.L.: ASM Handbook Volume 14A, Metalworking: Bulk Forming, p. 860. ASM International, Materials Park (2005)

    Book  Google Scholar 

  21. Malpani, M.; Kumar, S.: A feature based analysis of tube extrusion. J. Mater. Process. Technol. 190(1–3), 363–374 (2007)

    Article  Google Scholar 

  22. Schey, J.A.: Introduction to Manufacturing Processes, 3rd edn. McGraw-Hill, New York (2000)

    Google Scholar 

  23. Trucks, H.E.; Lewis, G.: Designing for Economical Production, 2nd edn. Society of Manufacturing Engineers, Dearborn (1987)

    Google Scholar 

  24. Vater, M.; Heil, H.P.: Effect of section shape on energy requirements for extrusion. Aluminium 45(3), 141–149 (1969)

    Google Scholar 

  25. Mielnik, E.M.: Metalworking Science and Engineering. McGraw-Hill, New York (1991)

    Google Scholar 

  26. Sheikh, A.K.; Arif, A.F.M.; Qamar, S.Z.: A probabilistic study of failures of solid and hollow dies in hot aluminum extrusion. J. Mater. Process. Technol. 155–156, 1740–1748 (2004)

    Article  Google Scholar 

  27. Sheikh, A. K.; Arif, A. F. M.; Qamar, S. Z.: Die life probability and reliability in hot aluminum extrusion. In: Proceedings of the International Conference on Advances in Materials and Processing Technologies (AMPT 2003), Dublin, Ireland, July 8–11, pp. 1184–1191 (2003)

  28. Sheppard, T.: Extrusion of Aluminum Alloys. Kluwer Academic, Dordrecht (1999)

    Book  Google Scholar 

  29. Nagpal, V.; Altan, T. Analysis of the three-dimensional metal flow in extrusion of shapes. In: Proceedings of the Third North American Metal Research Conference, Pittsburgh, USA, pp. 26–40 (1975)

  30. Oyinbo, S.T.; Ikumapayi, O.M.; Ajiboye, J.S.; Afolalu, S.A.: Numerical simulation of axisymmetric and asymmetric extrusion process using finite element method. Int. J. Sci. Eng. Res. 6(6), 1246 (2015)

    Google Scholar 

  31. Bingöl, S.; Ayer, Ö.; Altinbalik, T.: Extrusion load prediction of gear-like profile for different die geometries using ANN and FEM with experimental verification. Int. J. Adv. Manuf. Technol. 76, 983–992 (2015)

    Article  Google Scholar 

  32. Kodli, B.S.; Raja, W.: Parametric study of cone angle variation on extrusion complexity and dead metal zone using FEM. Int. J. Eng. Res. Dev. 3(4), 10–22 (2012)

    Google Scholar 

  33. Karami, P.; Abrinia, K.; Saghafi, B.: A new analytical definition of the dead material zone for forward extrusion of shaped sections. Meccanica 49(2), 295–304 (2014)

    Article  MATH  Google Scholar 

  34. Flitta, I.; Sheppard, T.: Material flow during the extrusion of simple and complex cross-sections using FEM. Mater. Sci. Technol. 21(6), 648–656 (2005)

    Article  Google Scholar 

  35. Selvaggio, A.; Becker, D.; Klaus, A.; Arendes, D.; Kleiner, M.: 60 Excellent Inventions in Metal Forming, pp. 287–292. Springer, Berlin Heidelberg, Germany (2015)

    Google Scholar 

  36. Liu, Z.; Li, L.; Li, S.; Yi, J.; Wang, G.: Simulation analysis of porthole die extrusion process and die structure modifications for an aluminum profile with high length-width ratio and small cavity. Materials 11, 1517 (2018)

    Article  Google Scholar 

  37. Zhang, C.; Zhao, G.; Guan, Y.; Gao, A.; Wang, L.; Li, P.: Virtual tryout and optimization of the extrusion die for an aluminum profile with complex cross-sections. Int. J. Adv. Manuf. Technol. 78, 927–937 (2015)

    Article  Google Scholar 

  38. Mayavarama, R.; Sajjaa, U.; Seclib, C.; Niranjanc S. Optimization of bearing lengths in aluminum extrusion dies. In: 8th CIRP Conference on Intelligent Computention in Manufacturing Engineering Procedia CIRP, vol. 12, pp. 276–281 (2013)

  39. Tabatabaei, S.A.; Givi, M.K.B.; Abrinia, K.; Rostamlou, M.H.: 3D profile modelling and accurate representation of the deforming region in the extrusion process of complex sections using equi-potential lines method. Int. J. Adv. Manuf. Technol. 80, 209–219 (2015)

    Article  Google Scholar 

  40. Barbara, R.; Lorenzo, D.; Luca, T.: Multi-goal optimization of industrial extrusion dies by means of meta-models. Int. J. Adv. Manuf. Technol. 88, 3281–3293 (2017)

    Article  Google Scholar 

  41. Gagliardi, F.; Ciancio, C.; Ambrogio, G.: Optimization of porthole die extrusion by Grey–Taguchi relational analysis. Int. J. Adv. Manuf. Technol. 94, 719–728 (2018)

    Article  Google Scholar 

  42. Zhang, C.; Chen, H.; Zhao, G.; Zhang, L.; Lou, S.: Optimization of porthole extrusion dies with the developed algorithm based on finite volume method. Int. J. Adv. Manuf. Technol. 85, 1901–1913 (2016)

    Article  Google Scholar 

  43. Dong, Y.; Zhang, C.; Luo, W.; Yang, S.; Zhao, G.: Material flow analysis and extrusion die modifications for an irregular and multitooth aluminum alloy radiator. Int. J. Adv. Manuf. Technol. 85, 1927–1935 (2016)

    Article  Google Scholar 

  44. Bakhtiani, T.; El-Mounayri, H.; Zhang, J.: Modeling of extrusion process of a condenser tube for investigating the effects of mandrel geometry. Int. J. Adv. Manuf. Technol. 92, 3237–3252 (2017)

    Article  Google Scholar 

  45. Sun, Y.D.; Chen, Q.R.; Sun, W.J.: Numerical simulation of extrusion process and die structure optimization for a complex magnesium doorframe. Int. J. Adv. Manuf. Technol. 80, 495–506 (2015)

    Article  Google Scholar 

  46. Dong, Y.; Zhanga, C.; Zhao, G.; Guan, Y.; Gao, A.; Sun, W.: Constitutive equation and processing maps of an Al–Mg–Si aluminum alloy: determination and application in simulating extrusion process of complex profiles. Mater. Des. 92, 983–997 (2016)

    Article  Google Scholar 

  47. Lee, I.; Lee, S.; Lee, S.; Jeong, M.; Kim, D.H.; Lee, J.; Cho, Y.: Porthole extrusion process design for magnesium alloy bumper back beam. Int. J. Precis. Eng. Manuf. 16(7), 1423–1428 (2015)

    Article  Google Scholar 

  48. Chekotu, J.C.: Analysis of product and tooling defects in extrusion. PhD thesis, Sultan Qaboos University, Muscat, Oman (2018)

  49. Chekotu, J.C.; Qamar, S.Z.; Qamar, S.B.: Numerical and experimental investigation of shape complexity in metal extrusion. In: 22nd International Conference on Material Forming (ESAFORM 2019), Vitoria-Gasteiz, 8–10 May 2019, Basque Country, Spain (2019)

  50. Yi, J.; Wang, Z.; Liu, Z.; Zhang, J.; He, X.: FE analysis of extrusion defect and optimization of metal flow in porthole die for complex hollow aluminium profile. Trans. Nonferrous Met. Soc. China 28, 2094–2101 (2018)

    Article  Google Scholar 

  51. Amigo, F.J.; Camacho, A.M.: Reduction of induced central damage in cold extrusion of dual-phase steel DP800 using double-pass dies. Metals 7, 335 (2017)

    Article  Google Scholar 

  52. Prakash, M.; Cleary, P.W.: Modelling highly deformable metal extrusion using SPH. Comput. Part. Mech. 2, 19–38 (2015)

    Article  Google Scholar 

  53. Li, L.; Hou, W.; Zhang, Z.; Xie, J.; Ma, Q.; Gai, H.: Effect of cross-section complexity on the extrusion exit temperature of aluminum solid profile. Suxing Gongcheng Xuebao/J. Plast. Eng. 22(2), 12–17 (2015)

    Google Scholar 

  54. Rahim, S.N.A.; Lajis, M.A.; Ariffin, S.: Effect of extrusion speed and temperature on hot extrusion process of 6061 aluminum alloy chip. ARPN J. Eng. Appl. Sci. 11(4), 2272–2277 (2016)

    Google Scholar 

  55. Dang, L.; Yang, H.; Guo, L.G.; Zeng, W.D.; Zhang, J.: Study on exit temperature evolution during extrusion for large-scale thick-walled Inconel 625 pipe by FE simulation. Int. J. Adv. Manuf. Technol. 76, 1421–1435 (2015)

    Article  Google Scholar 

  56. Gattmah, J.; Ozturk, F.; Orhan, S.: Effects of process parameters on hot extrusion of hollow tube. Arab J Sci Eng 2017(42), 2021–2030 (2017)

    Article  Google Scholar 

  57. Lu, X.; Zhou, Y.F.; Xing, X.L.; Tai, Q.A.; Guanc, H.; Shao, L.Y.; Liua, X.X.; Gaoa, S.Y.: Failure analysis of hot extrusion die based on dimensional metrology, micro-characterization and numerical simulation: a case study of Ti alloy parts. Eng. Fail. Anal. 73, 113–128 (2017)

    Article  Google Scholar 

  58. Matsumoto, R.; Hayashi, K.; Utsunomiya, H.: Experimental and numerical analysis of friction in high aspect ratio combined forward-backward extrusion with retreat and advance pulse ram motion on a servo press. J. Mater. Process. Technol. 214, 936–944 (2014)

    Article  Google Scholar 

  59. Tercelj, M.; Panjan, P.; Cvahte, P.; Fajfar, P.; Kugler, G.: Increasing of service times of nitrided and CrN coated dies for Al hot extrusion. Procedia Eng. 81, 1952–1957 (2014)

    Article  Google Scholar 

  60. Qamar, S. Z.: Modeling and analysis of extrusion pressure and die life for complex aluminum profiles. PhD Thesis, King Fahd University of Petroleum & Minerals: Saudi Arabia (2004)

  61. Bevacqua, A.; Medvedev, A.E.; Molotnikov, A.; Axe, R.; Lapovok, R.: Possibility to predict extrusion die incidental fracture by finite element simulation. Adv. Eng. Mater. 19(3), 1600687 (2017)

    Article  Google Scholar 

  62. Bralla, J.G.: Design for Manufacturability Handbook. McGraw-Hill, USA (1998)

    Google Scholar 

  63. Philpott, M. L.; Schrader, R. S.; Subbarao, G. Integrated real-time feature based costing (FBC); U.S. Patent 7065420 (2006)

  64. Huang, X.; Deng, R.: A protection type porthole die with twin cavities for semi-hollow al-profiles. In: 2nd International Conference on Architectural, Civil and Hydraulics Engineering (ICACHE 2016)

  65. Zhou, W.; Lin, J.; Dean, T.A.; Wang, L.: A novel application of sideways extrusion to produce curved aluminium profiles: feasibility study. In: International Conference on the Technology of Plasticity, ICTP 2017, 17–22 September 2017, Cambridge, United Kingdom (2017)

  66. Michalczyk, J.: The development and numerical analysis of the conical radiator extrusion process. Arch. Metall. Mater. 62(4), 2267–2272 (2017)

    Article  Google Scholar 

  67. Ren, L.; Zhou, X.; Song, Z.; Zhao, C.; Liu, Q.; Xue, J.; Li, X.: Process parameter optimization of extrusion-based 3D metal printing utilizing PW–LDPE–SA binder system. Materials 10, 305 (2017)

    Article  Google Scholar 

  68. Negendank, M.; Mueller, S.; Reimers, W.: Coextrusion of Mg–Al macro composites. J. Mater. Process. Technol. 212, 1954–1962 (2012)

    Article  Google Scholar 

  69. Chen, L.; Tang, J.; Zhao, G.; Zhang, C.; Chu, X.: Fabrication of Al/Mg/Al laminate by a porthole die co-extrusion process. J. Mater. Process. Technol. 258, 165–173 (2018)

    Article  Google Scholar 

  70. Sun, C.Y.; Xianga, Y.; Fub, M.W.; Sun, Z.H.; Wang, M.Q.; Yanga, J.: The combined lateral and axial extrusion process of a branched component with two asymmetrically radial features. Mater. Des. 111, 492–503 (2016)

    Article  Google Scholar 

  71. Mahmoodkhani, Y.; Wells, M.A.: Co-extrusion process to produce Al–Mg eutectic clad magnesium products at elevated temperature. J. Mater. Process. Technol. 232, 175–183 (2016)

    Article  Google Scholar 

  72. Cobb, C.L.; Solberg, S.E.: Communication—analysis of thick co-extruded cathodes for higher-energy-and-power lithium-ion batteries. J. Electrochem. Soc. 164(7), A1339–A1341 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support of Sultan Qaboos University in conducting this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayyad Zahid Qamar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qamar, S.Z., Chekotu, J.C., Al-Maharbi, M. et al. Shape Complexity in Metal Extrusion: Definitions, Classification, and Applications. Arab J Sci Eng 44, 7371–7384 (2019). https://doi.org/10.1007/s13369-019-03886-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03886-8

Keywords

Navigation