Skip to main content
Log in

The Universal Critical Coordinate in the MHD Wall Jet

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present communication, it is shown for the first time that in a discharged jet over a plane surface in the presence of a transverse magnetic field, there exists a critical coordinate in which the shear stress at the wall becomes zero; afterward, it is expected a region of reversed flow and hence, an altered flow dynamic. This coordinate was noticed by the numerical solution of the perturbed-differential transformation of the governing equations using Runge–Kutta–Fehlberg (RKF45). It is argued that in the flow control applications regarding the magnetohydrodynamic wall jet, this newly found critical coordinate should be put into considerations for an optimal design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

E :

Electric field (N/C)

j :

Electric current (C/s)

P :

Pressure (Pa)

V :

Velocity vector (m/s)

B:

Magnetic field (N s/C m)

\( \mu \) :

Permeability (H/m)

\( \upsilon \) :

Kinematic viscosity (m2/s)

\( \rho \) :

Fluid density (kg/m3)

\( \vartheta \) :

Excess charge (C)

\( \sigma \) :

Electrical conductivity (A2 s3/m3 kg)

References

  1. Glauert, M.B.: The wall jet. J. Fluid Mech. 1, 625–643 (1956)

    Article  MathSciNet  Google Scholar 

  2. Jafarimoghaddam, A.; Aberoumand, S.: DBD plasma: explicit model with integral approximate solution to wall jet. J. Aerosp. Tecnol. Manag. 10, e0818 (2018). https://doi.org/10.5028/jatm.v10.763

    Google Scholar 

  3. Schwarz, W.H.; Caswell, B.: Some heat transfer characteristics of the two-dimensional laminar incompressible wall jet. Chem. Eng. Sci. 16, 338–391 (1961)

    Article  Google Scholar 

  4. Gorla, R.S.R.: Unsteady heat transfer characteristics of a two dimensional laminar wall jet. Int. J. Eng. Sci. 11, 841–851 (1973)

    Article  Google Scholar 

  5. Bansal, J.L.; Tak, S.S.: Approximate solutions of heat and momentum transfer in laminar plane wall jet. Appl. Sci. Res. 34, 299–312 (1978)

    Article  MATH  Google Scholar 

  6. Turkyilmazoglu, M.: Flow of nanofluid plane wall jet and heat transfer. Eur. J. Mech. B/Fluids (2016). https://doi.org/10.1016/j.euromechflu.2016.04.007

    MathSciNet  MATH  Google Scholar 

  7. Jafarimoghaddam, A.: Wall jet flows of Glauert type: heat transfer characteristics and the thermal instabilities in analytic closed forms. Eur. J. Mech./B Fluids 71, 77–91 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jafarimoghaddam, A.: Closed form analytic solutions to heat and mass transfer characteristics of wall jet flow of nanofluids. Therm. Sci. Eng. Prog. 4, 175–184 (2017)

    Article  Google Scholar 

  9. Sandeep, N.; Animasaun, I.L.: Heat transfer in wall jet flow of magnetic-nanofluids with variable magnetic field. Alex. Eng. J. (2017). https://doi.org/10.1016/j.aej.2016.12.019

    Google Scholar 

  10. Ali Zaidi, S.Z.; Mohyud-Din, S.T.: Convective heat transfer and MHD effects on two dimensional wall jet flow of a nanofluid with passive control model. Aerosp. Sci. Technol. (2015). https://doi.org/10.1016/j.ast.2015.12.008

    Google Scholar 

  11. Zaidi, S.Z.A.; Mohyud-din, S.T.; Bin-Mohsen, B.: A comparative study of wall jet flow containing carbon nanotubes with convective heat transfer and MHD. Eng. Comput. 34(3), 739–753 (2017). https://doi.org/10.1108/EC-03-2016-0087

    Article  Google Scholar 

  12. Mohyud-Din, S.T.; Zaidi, S.Z.A.: Soret and MHD effects on bioconvection wall jet flow of nanofluid containing gyrotactic microorganisms. Neural Comput. Appl. 28, 599–609 (2016). https://doi.org/10.1007/s00521-016-2366-9

    Article  Google Scholar 

  13. Mohyud-Din, S.T.; Zaidi, Z.A.; Bin-Mohsin, B.: Effects of nonlinear Rosseland thermal radiation on MHD steady wall jet flow. Neural Comput. Appl. 28, 749–754 (2016). https://doi.org/10.1007/s00521-016-2399-0

    Article  Google Scholar 

  14. Jafarimoghaddam, A.: Two-phase modeling of magnetic nanofluids jets over a Stretching/shrinking wall. Therm. Sci. Eng. Prog. 8, 375–384 (2018)

    Article  Google Scholar 

  15. Jafarimoghaddam, A.: The magnetohydrodynamic wall jets: techniques for rendering similar and perturbative non-similar solutions. Eur. J. Mech. B/Fluids 75, 44–57 (2019). https://doi.org/10.1016/j.euromechflu.2018.12.007

    Article  MathSciNet  Google Scholar 

  16. Jafarimoghaddam, A.; Pop, I.: Numerical modeling of Glauert type exponentially decaying wall jet flows of nanofluids using Tiwari and Das’ nanofluid model. Int. J. Numer. Methods Heat Fluid Flow 29(3), 1010–1038 (2019). https://doi.org/10.1108/HFF-08-2018-0437

    Article  Google Scholar 

  17. Shi, L.; He, Y.; Wang, X.; Hu, Y.: Recyclable photo-thermal conversion and purification systems via Fe3O4@TiO2 nanoparticles. Energy Convers. Manag. 171, 272–278 (2018). https://doi.org/10.1016/j.enconman.2018.05.106

    Article  Google Scholar 

  18. Shi, L.; He, Y.; Hu, Y.; Wang, X.: Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field. Energy Convers. Manag. 177, 249–257 (2018). https://doi.org/10.1016/j.enconman.2018.09.046

    Article  Google Scholar 

  19. Mahmood, T.: A laminar wall jet on a moving wall. Aeta Mech. 71, 51–60 (1988)

    MATH  Google Scholar 

  20. Fukusako, S.: Laminar wall jet with blowing or suction. J. Spacecr. Rockets 7, 91–92 (1970)

    Article  Google Scholar 

  21. Gorla, R.S.R.: Nonsimilar solutions for heat transfer in wall jet flows. Chem. Eng. Commun. 140, 139–156 (1996)

    Article  Google Scholar 

  22. Pantokratoras, A.: The nonsimilar laminar wall jet with uniform blowing or suction: new results. Mech. Res. Commun. 36, 747–753 (2009)

    Article  MATH  Google Scholar 

  23. Jafarimoghaddam, A.: On the homotopy analysis method (HAM) and homotopy perturbation method (HPM) for a nonlinearly stretching sheet flow of Eyring-Powell fluids. Eng. Sci. Technol. Int. J. (2018). https://doi.org/10.1016/j.jestch.2018.11.001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Jafarimoghaddam.

Additional information

Amin Jafarimoghaddam: Previously at the Department of Aerospace Engineering, K.N. Toosi University of Technology, Tehran, Iran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarimoghaddam, A. The Universal Critical Coordinate in the MHD Wall Jet. Arab J Sci Eng 44, 7699–7705 (2019). https://doi.org/10.1007/s13369-019-03859-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03859-x

Keywords

Navigation