Skip to main content

Advertisement

Log in

Tensile After Impact Test of Scarf-Repaired Composite Laminates

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents the influence of impact location at the bond line of internal repaired composite. Regarding this, the composite laminates were manufactured via vacuum assist resin infusion method and scarfed adhesive bonded repair technique was used for the laminates. Four different impact points were selected on the repaired laminates to apply the impact load. Low-velocity impact test was conducted via drop weight impact on the repaired samples with two different energy levels (15 and 25 J), and damage analysis was carried out through visual inspection of the each impacted laminates. Furthermore, the impact response of the repaired laminates was compared with virgin impacted composites and inspected based on impact parameters such as maximum force, impact time duration, damaged area, damage depth, and energy absorption. In addition, the residual strength of the impacted samples was investigated using tensile test. The results disclosed that the repaired composite showed susceptibility to impact that varied with impact locations. From the tensile test, it was evident that scarf repair was capable of restoring 78.16% of the strength. Tensile test discovered that the repaired sample impacted outside of the repaired zone which demonstrated the least damage and proved more efficient to carry more tensile load, whereas the impact location at the scarf edge depicted larger damage and bear the least tensile load. A correlation was established among tensile after impact and the energy absorption of the laminates. The laminate obtained more absorbed energy during low-velocity impact and sustained the least tensile load while tensile testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Caminero, M.A.; Pavlopoulou, S.; Lopez-Pedrosa, M.; Nicolaisson, B.G.; Pinna, C.; Soutis, C.: Analysis of adhesively bonded repairs in composites: damage detection and prognosis. Compos. Struct. 95, 500–517 (2013). https://doi.org/10.1016/j.compstruct.2012.07.028

    Article  Google Scholar 

  2. Katnam, K.B.; Silva, L.F.M.D.; Young, T.M.: Bonded repair of composite aircraft structures: a review of scientific challenges and opportunities. Prog. Aerosp. Sci. 61, 26–42 (2013). https://doi.org/10.1016/j.paerosci.2013.03.003

    Article  Google Scholar 

  3. Shufeng, L.; Xiaoquan, C.; Yunyan, X.; Jianwen, B.; Xin, G.: Study on impact performances of scarf-repaired carbon fiber reinforced polymer laminates. J. Reinf. Plast. Compos. 34, 60–71 (2014). https://doi.org/10.1177/0731684414562465

    Article  Google Scholar 

  4. Xu, Y.; Zhu, J.; Wu, Z.; Cao, Y.; Zhao, Y.; Zhang, W.: A review on the design of laminated composite structures: constant and variable stiffness design and topology optimization. Adv. Compos. Hybrid Mater. 1, 460–477 (2018). https://doi.org/10.1007/s42114-018-0032-7

    Article  Google Scholar 

  5. Priyanka, P.; Dixit, A.; Mali, H.S.: High-strength hybrid textile composites with carbon, Kevlar, and E-glass fibers for impact-resistant structures. A review. Mech. Compos. Mater. 53, 685–701 (2017). https://doi.org/10.1007/s11029-017-9696-2

    Article  Google Scholar 

  6. Zhou, S.; Wang, Z.; Zhou, J.; Wu, X.: Experimental and numerical investigation on bolted composite joint made by vacuum assisted resin injection. Compos. Part B 45, 1620–1628 (2013). https://doi.org/10.1016/j.compositesb.2012.08.025

    Article  Google Scholar 

  7. Adin, H.: The effect of angle on the strain of scarf lap joints subjected to tensile loads. Appl. Math. Model. 36, 2858–2867 (2012). https://doi.org/10.1016/j.apm.2011.09.079

    Article  Google Scholar 

  8. Bendemra, H.; Compston, P.; Crothers, P.J.: Optimisation study of tapered scarf and stepped-lap joints in composite repair patches. Compos. Struct. 130, 1–8 (2015). https://doi.org/10.1016/j.compstruct.2015.04.016

    Article  Google Scholar 

  9. Wang, C.H.; Gunnion, A.J.; Orifici, A.C.; Rider, A.: Residual strength of composite laminates containing scarfed and straight-sided holes. Compos. Part A Appl. Sci. Manuf. 42, 1951–1961 (2011). https://doi.org/10.1016/j.compositesa.2011.08.020

    Article  Google Scholar 

  10. Andrew, J.J.; Arumugam, V.; Saravanakumar, K.; Dhakal, H.N.; Santulli, C.: Compression after impact strength of repaired GFRP composite laminates under repeated impact loading. Compos. Struct. 133, 911–920 (2015). https://doi.org/10.1016/j.compstruct.2015.08.022

    Article  Google Scholar 

  11. Balaganesan, G.; Khan, V.C.: Energy absorption of repaired composite laminates subjected to impact loading. Compos. Part B Eng. 98, 39–48 (2016). https://doi.org/10.1016/j.compositesb.2016.04.083

    Article  Google Scholar 

  12. Yu, G.C.; Wu, L.Z.; Ma, L.; Xiong, J.: Low velocity impact of carbon fiber aluminum laminates. Compos. Struct. 119, 757–766 (2015). https://doi.org/10.1016/j.compstruct.2014.09.054

    Article  Google Scholar 

  13. Coelho, S.R.M.; Reis, P.N.B.; Ferreira, J.A.M.; Pereira, A.M.: Effects of external patch configuration on repaired composite laminates subjected to multi-impacts. Compos. Struct. 168, 259–265 (2017). https://doi.org/10.1016/j.compstruct.2017.02.069

    Article  Google Scholar 

  14. Soto, A.; González, E.V.; Maimí, P.; Mayugo, J.A.; Pasquali, P.R.; Camanho, P.P.: A methodology to simulate low velocity impact and compression after impact in large composite stiffened panels. Compos. Struct. 204, 223–238 (2018). https://doi.org/10.1016/j.compstruct.2018.07.081

    Article  Google Scholar 

  15. Sharma, A.P.; Khan, S.H.; Kitey, R.; Parameswaran, V.: Effect of through thickness metal layer distribution on the low velocity impact response of fiber metal laminates. Polym. Test. 65, 301–312 (2018). https://doi.org/10.1016/j.polymertesting.2017.12.001

    Article  Google Scholar 

  16. Langella, T.; Rogani, A.; Navarro, P.; Ferrero, J.F.; Lopresto, V.; Langella, A.: Experimental Study of the influence of a tensile preload on thin woven composite laminates under impact loading. J. Mater. Eng. Perform. 5, 4 (2019). https://doi.org/10.1007/s11665-019-03916-4

    Google Scholar 

  17. Andrew, J.J.; Srinivasan, S.M.; Arockiarajan, A.: The role of adhesively bonded super hybrid external patches on the impact and post-impact response of repaired glass/epoxy composite laminates. Compos. Struct. 184, 848–859 (2018). https://doi.org/10.1016/j.compstruct.2017.10.070

    Article  Google Scholar 

  18. Liu, B.; Xu, F.; Qin, J.; Lu, Z.: Study on impact damage mechanisms and TAI capacity for the composite scarf repair of the primary load-bearing level. Compos. Struct. 181, 183–193 (2017). https://doi.org/10.1016/j.compstruct.2017.08.087

    Article  Google Scholar 

  19. Cheng, X.; Zhang, J.; Bao, J.; Zeng, B.; Cheng, Y.; Hu, R.: Low-velocity impact performance and effect factor analysis of scarf-repaired composite laminates. Int. J. Impact Eng 111, 85–93 (2018). https://doi.org/10.1016/j.ijimpeng.2017.09.004

    Article  Google Scholar 

  20. Cheng, X.; Du, X.; Zhang, J.; Zhang, J.; Guo, X.; Bao, J.: Effects of stacking sequence and rotation angle of patch on low velocity impact performance of scarf repaired laminates. Compos. Part B Eng. 133, 78–85 (2018). https://doi.org/10.1016/j.compositesb.2017.09.020

    Article  Google Scholar 

  21. Guo, X.; Li, Z.; Nie, H.; He, W.; Guan, Z.: Impact resistance and damage tolerance of scarf-repaired composite structures: an experimental investigation. Polym. Compos. 37, 1681–1694 (2016). https://doi.org/10.1002/pc.23341

    Article  Google Scholar 

  22. Cheng, X.; Zhao, W.; Liu, S.; Xu, Y.; Bao, J.: Damage of scarf-repaired composite laminates subjected to low-velocity impacts. Steel Compos. Struct. 17, 199–213 (2014). https://doi.org/10.12989/scs.2014.17.2.199

    Article  Google Scholar 

  23. Wang, S.X.; Wu, L.Z.; Ma, L.: Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates. Mater. Des. 31, 118–125 (2010). https://doi.org/10.1016/j.matdes.2009.07.003

    Article  Google Scholar 

  24. Ghelli, D.; Minak, G.: Low velocity impact and compression after impact tests on thin carbon/epoxy laminates. Compos. Part B Eng. 42, 2067–2079 (2011). https://doi.org/10.1016/j.compositesb.2011.04.017

    Article  Google Scholar 

  25. Zhou, J.; Liao, B.; Shi, Y.; Zuo, Y.; Tuo, H.; Jia, L.: Low-velocity impact behavior and residual tensile strength of CFRP laminates. Compos. Part B Eng. 161, 300–313 (2019). https://doi.org/10.1016/j.compositesb.2018.10.090

    Article  Google Scholar 

  26. Kumari, P.; Wang, J.: Residual tensile strength of the multi-impacted scarf-repaired glass fiber-reinforced polymer (GFRP) composites. Materials 11, 2351 (2018). https://doi.org/10.3390/ma11122351

    Article  Google Scholar 

  27. Halimi, F.; Golzar, M.; Asadi, P.; Beheshty, M.H.: Core modifications of sandwich panels fabricated by vacuum-assisted resin transfer molding. J. Compos. Mater. 47, 1853–1863 (2012). https://doi.org/10.1177/0021998312451763

    Article  Google Scholar 

  28. Xiaoquan, C.; Baig, Y.; Renwei, H.; Yujian, G.; Jikui, Z.: Study of tensile failure mechanisms in scarf repaired CFRP laminates. Int. J. Adhes. Adhes. 41, 177–185 (2013). https://doi.org/10.1016/j.ijadhadh.2012.10.015

    Article  Google Scholar 

  29. Andrew, J.J.; Arumugam, V.; Ramesh, C.; Poorani, S.; Santulli, C.: Quasi-static indentation properties of damaged glass/epoxy composite laminates repaired by the application of intraply hybrid patches. Polym. Testing 61, 132–145 (2017). https://doi.org/10.1016/j.polymertesting.2017.05.014

    Article  Google Scholar 

  30. ASTM D2093-03: Standard Practice for Preparation of Surfaces of Plastics Prior to Adhesive Bonding. ASTM International, West Conshohocken, PA, USA (2003)

  31. ASTMD7136/D7136M-05: Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International, West Conshohocken, PA, USA (2005)

  32. Papa, I.; Ricciardi, M.R.; Antonucci, V.; Lopresto, V.; Langella, A.: Impact performance of GFRP laminates with modified epoxy resin. Procedia Eng. 167, 160–167 (2016). https://doi.org/10.1016/j.proeng.2016.11.683

    Article  Google Scholar 

  33. Sadighi, M.; Tooski, M.Y.; Alderliesten, R.C.: An experimental study on the low velocity impact resistance of fibre metal laminates under successive impacts with reduced energies. Aerosp. Sci. Technol. 67, 54–61 (2017). https://doi.org/10.1016/j.ast.2017.03.042

    Article  Google Scholar 

  34. Andrew, J.; Ramesh, C.: Residual strength and damage characterization of unidirectional glass–basalt hybrid/epoxy CAI laminates. Arab.J. Sci. Eng. 40, 1695–1705 (2015). https://doi.org/10.1007/s13369-015-1651-8

    Article  Google Scholar 

  35. Reddy, T.S.; Reddy, P.R.S.; Madhu, V.: Response of E-glass/epoxy and Dyneema® composite laminates subjected to low and high velocity impact. Procedia Eng. 173, 278–285 (2017). https://doi.org/10.1016/j.proeng.2016.12.014

    Article  Google Scholar 

  36. Yang, B.; Wang, Z.; Zhou, L.; Zhang, J.; Liang, W.: Experimental and numerical investigation of interply hybrid composites based on woven fabrics and PCBT resin subjected to low-velocity impact. Compos. Struct. 132, 464–476 (2015). https://doi.org/10.1016/j.compstruct.2015.05.069

    Article  Google Scholar 

  37. Chen, Q.; Guan, Z.; Li, Z.; Ji, Z.; Zhuo, Y.: Experimental investigation on impact performances of GLARE laminates. Chin. J. Aeronaut. 28, 1784–1792 (2015). https://doi.org/10.1016/j.cja.2015.07.002

    Article  Google Scholar 

  38. Mathivanan, N.R.; Jerald, J.: Experimental investigation of low-velocity impact characteristics of woven glass fiber epoxy matrix composite laminates of EP3 grade. Mater. Des. 31, 4553–4560 (2010). https://doi.org/10.1016/j.matdes.2010.03.051

    Article  Google Scholar 

  39. Jefferson, A.J.; Srinivasan, S.M.; Arockiarajan, A.: Effect of multiphase fiber system and stacking sequence on low-velocity impact and residual tensile behavior of glass/epoxy composite laminates. Polym. Compos. (2018). https://doi.org/10.1002/pc.24884

    Google Scholar 

  40. Nie, H.; Xu, J.; Guan, Z.; Wang, Q.; Li, Z.: Tensile behaviors after impact of composite scarf joints. In: 2016 7th International Conference on Mechanical and Aerospace Engineering (2016)

  41. Habibi, M.; Laperrière, L.; Hassanabadi, H.M.: Influence of low-velocity impact on residual tensile properties of nonwoven flax/epoxy composite. Compos. Struct. 186, 175–182 (2018). https://doi.org/10.1016/j.compstruct.2017.12.024

    Article  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to Professor Jihui Wang for his inputs in this research. The reported research work was part of the Fundamental Research Funds for the Central Universities supported by the Wuhan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Punita Kumari or Jihui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Wang, J. & Saahil Tensile After Impact Test of Scarf-Repaired Composite Laminates. Arab J Sci Eng 44, 7677–7697 (2019). https://doi.org/10.1007/s13369-019-03857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03857-z

Keywords

Navigation