Skip to main content

Advertisement

Log in

Experimental Investigation of Water-Cooled Heat Pipes in the Thermal Management of Lithium-Ion EV Batteries

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, an experimental study was conducted to investigate the thermal performance of a heat pipe thermal management system for electric vehicle lithium-ion batteries. The battery cells were represented by two proxy cells with a heat source ranging from 10 to 35 W/cell. The evaporator of the heat pipes was in close contact with the battery cell surface, and the condenser was subjected to the forced convection of circulating water. The performance was characterized by the maximum surface temperature, temperature difference, total thermal resistance and Nusselt number at the condenser side. The effects of heat inputs, length of the condenser and water flowrate were also investigated. A condenser length in the range of 100–150 mm and water flowrate showed insignificant effects on the battery surface temperature and the total thermal resistance. Heat pipes were also observed to be able to reduce the battery surface temperature by 39.1% on average. They are also capable of maintaining the surface temperature below 50 °C and temperature differential below 5 °C if the heat generation of the battery cell is less than 20 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

BTMS:

Battery thermal management system

EV:

Electric vehicle

HEV:

Hybrid electric vehicle

NCC:

Naturally cooled condenser

PCM:

Phase-change material

TMS:

Thermal management system

WCC:

Water-cooled condenser

δ :

Thickness (m)

:

Mass flowrate (kg/s)

η :

Thermal efficiency of heat pipe

Nu :

Nusselt number

A s :

Surface area of the heat pipe that is exposed to the water (m2)

c p :

Specific heat capacity (J/kg K)

d :

Diameter (m)

e h :

Uncertainty for convection coefficient

e loss :

Uncertainty for the heat loss

e Nu :

Uncertainty for Nusselt number

e Q :

Uncertainty for heat input

e R :

Uncertainty for thermal resistance

h :

Convection heat transfer coefficient (W/m K)

I :

Electrical current (A)

k :

Thermal conductivity of the surrounding fluid at the condenser side (W/m2 K)

L :

Length (m)

Q cond :

Heat removed from the condenser section (W)

R t :

Total thermal resistance of the system (K/W)

T p :

Average surface temperature of the proxy battery cell (°C)

T f :

Temperature of the surrounding fluid (water) on the condenser side (°C)

T in :

Water temperature at the entrance of the water tank (°C)

T out :

Water temperature at the exit of the water tank (°C)

T pipe :

Condenser surface temperature (°C)

V :

Voltage (V)

c:

Condenser

e:

Evaporator

i:

Inner

o:

Outer

w:

Wick outer region

References

  1. Frieske, B.; Kloetzke, M.; Mauser, F.: Trends in vehicle concept and key technology development for hybrid and battery electric vehicles. In: 2013 World Electric Vehicle Symposium and Exhibition, Barcelona, Spain, pp. 1–12 (2013)

  2. Sato, N.: Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles. J. Power Sources 99, 70–77 (2001)

    Article  Google Scholar 

  3. Rao, Z.; Wang, S.: A review of power battery thermal energy management. Renew. Sustain. Energy Rev. 15, 4554–4571 (2011)

    Article  Google Scholar 

  4. Khateeb, S.A.; Amiruddin, S.; Farid, M.; Selman, J.R.; Al-Hallaj, S.: Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation. J. Power Sources 142, 345–353 (2005)

    Article  Google Scholar 

  5. Pesaran, A.A.: Battery thermal models for hybrid vehicle simulations. J. Power Sources 110, 377–382 (2002)

    Article  Google Scholar 

  6. Tran, T.-H.; Harmand, S.; Sahut, B.: Experimental investigation on heat pipe cooling for hybrid electric vehicle and electric vehicle lithium-ion battery. J. Power Sources 265, 262–272 (2014)

    Article  Google Scholar 

  7. Karimi, G.; Li, X.: Thermal management of lithium-ion batteries for electric vehicles. Int. J. Energy Res. 37, 13–24 (2013)

    Article  Google Scholar 

  8. Sabbah, R.; Kizilel, R.; Selman, J.R.; Al-Hallaj, S.: Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution. J. Power Sources 182, 630–638 (2008)

    Article  Google Scholar 

  9. Pesaran, A.: Battery Thermal Management in EVs and HEVs : Issues and Solutions. In: Advanced Automotive Batteries Conference, Las Vegas, Nevada, p. 10 (2001)

  10. Rao, Z.; Huo, Y.; Liu, X.; Zhang, G.: Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam. J. Energy Inst. 88, 241–246 (2015)

    Article  Google Scholar 

  11. Kizilel, R.; Sabbah, R.; Selman, J.R.; Al-Hallaj, S.: An alternative cooling system to enhance the safety of Li-ion battery packs. J. Power Sources 194, 1105–1112 (2009)

    Article  Google Scholar 

  12. Liu, R.; Chen, J.; Xun, J.; Jiao, K.; Du, Q.: Numerical investigation of thermal behaviors in lithium-ion battery stack discharge. Appl. Energy 132, 288–297 (2014)

    Article  Google Scholar 

  13. Faghri, A.; Harley, C.: Transient lumped heat pipe analyses. Heat Recovery Syst. CHP 14, 351–363 (1994)

    Article  Google Scholar 

  14. Ting, C.; Chen, C.: Analyzing the heat transfer property of heat pipe influenced by integrated cooling apparatus. Chin. J. Eng. 2014, 1–10 (2014)

    Article  Google Scholar 

  15. Yang, X.; Yan, Y.Y.; Mullen, D.: Recent developments of lightweight, high performance heat pipes. Appl. Therm. Eng. 33–34, 1–14 (2012)

    Article  Google Scholar 

  16. Swanepoel, G.: Thermal Management of Hybrid Electrical Vehicles. University of Stellenbosch, Stellenbosch (2001)

    Google Scholar 

  17. Wu, M.S.; Liu, K.H.; Wang, Y.Y.; Wan, C.C.: Heat dissipation design for lithium-ion batteries. J. Power Sources 109, 160–166 (2002)

    Article  Google Scholar 

  18. Rao, Z.; Wang, S.; Wu, M.; Lin, Z.; Li, F.: Experimental investigation on thermal management of electric vehicle battery with heat pipe. Energy Convers. Manag. 65, 92–97 (2013)

    Article  Google Scholar 

  19. Tran, T.-H.; Harmand, S.; Desmet, B.; Filangi, S.: Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery. Appl. Therm. Eng. 63, 551–558 (2014)

    Article  Google Scholar 

  20. Zhao, R.; Gu, J.; Liu, J.: An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries. J. Power Sources 273, 1089–1097 (2015)

    Article  Google Scholar 

  21. Wang, Q.; Jiang, B.; Xue, Q.F.; Sun, H.L.; Li, B.; Zou, H.M.; et al.: Experimental investigation on EV battery cooling and heating by heat pipes. Appl. Therm. Eng. 88, 54–60 (2014)

    Article  Google Scholar 

  22. Ye, Y.; Shi, Y.; Saw, L.H.; Tay, A.A.O.: Performance assessment and optimization of a heat pipe thermal management system for fast charging lithium ion battery packs. Int. J. Heat Mass Transf. 92, 893–903 (2016)

    Article  Google Scholar 

  23. Smith, J.; Singh, R.; Hinterberger, M.; Mochizuki, M.: Battery thermal management system for electric vehicle using heat pipes. Int. J. Therm. Sci. 134, 517–529 (2018)

    Article  Google Scholar 

  24. Yamada, T.; Koshiyama, T.; Yoshikawa, M.; Yamada, T.; Ono, N.: Analysis of a lithium-ion battery cooling system for electric vehicles using a phase-change material and heat pipes. J. Therm. Sci. Technol. 12, JTST0011-JTST0011 (2017)

    Article  Google Scholar 

  25. Hata, H.; Wada, S.; Yamada, T.; Hirata, K.; Yamada, T.; Ono, N.: Performance evaluation of a battery-cooling system using phase-change materials and heat pipes for electric vehicles under the short-circuited battery condition. J. Therm. Sci. Technol. 13, JTST0024-JTST0024 (2018)

    Article  Google Scholar 

  26. Liu, F.-F.; Lan, F.-C.; Chen, J.-Q.; Li, Y.-G.: Experimental investigation on cooling/heating characteristics of ultra-thin micro heat pipe for electric vehicle battery thermal management. Chin. J. Mech. Eng. 31, 53 (2018)

    Article  Google Scholar 

  27. Elnaggar, M.H.A.; Abdullah, M.Z.; Munusamy, S.R.R.: Experimental and numerical studies of finned L-shape heat pipe for notebook-PC cooling. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 978–988 (2013)

    Article  Google Scholar 

  28. Sadeghinezhad, E.; Mehrali, M.; Rosen, M.A.; Akhiani, A.R.; Tahan, Latibari S.; Mehrali, M.; et al.: Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance. Appl. Therm. Eng. 100, 775–787 (2016)

    Article  Google Scholar 

  29. Sözen, A.; Menlik, T.; Gürü, M.; Boran, K.; Kiliç, F.; Aktaş, M.; et al.: A comparative investigation on the effect of fly-ash and alumina nanofluids on the thermal performance of two-phase closed thermo-syphon heat pipes. Appl. Therm. Eng. 96, 330–337 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the supports provided by Universiti Sains Malaysia and Universiti Kuala Lumpur Malaysian Spanish Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiza M. Nasir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasir, F.M., Abdullah, M.Z. & Ismail, M.A. Experimental Investigation of Water-Cooled Heat Pipes in the Thermal Management of Lithium-Ion EV Batteries. Arab J Sci Eng 44, 7541–7552 (2019). https://doi.org/10.1007/s13369-019-03851-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03851-5

Keywords

Navigation