Skip to main content
Log in

A New Approach in Predicting Gas Adsorption Isotherms and Isosteric Heats Based on Two-Dimensional Equations of State

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present study provides a modified approach in determining gas adsorption equilibria based on two-dimensional equations of state (2-D EOS). The proposed model utilizes temperature-dependent parameters in the general form of the 2-D EOS. These parameters were considered similar to other well-known isotherm models, such as Langmuir as specifics function of temperature. The proposed model was examined against various experimental single- and multi-component adsorption isotherm data. In most of the investigated cases, the proposed model reduces the error of predictions compared with temperature-independent two-dimensional equations of state. Moreover, utilizing temperature-dependent two-dimensional equations of state, isosteric heat of adsorption was theoretically obtained and compared with experimental heats of adsorption for different homogeneous and heterogeneous adsorption systems. Applying temperature-dependent parameters within 2-D EOS enables us to describe the heterogeneity of considered adsorption systems quite well. Predicted isosteric heats are in good accordance with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2-D EOS:

Two-dimensional equation of state

a :

Specific molar volume of adsorbent (\(\hbox {m}^{2}/\hbox {mol}\))

A :

Surface area per mass of adsorbent (\(\hbox {m}^{2}/\hbox {kg}\))

%AAD:

percentage of absolute average deviation

f :

Fugacity (kPa)

k :

Parameter of the TI 2-D EOS model (mol/kPa kg)

\(k_{1}\) :

Parameter of the TD model (mol/kPa kg)

\(k_{2}\) :

Parameter of the TD model parameter (\(\hbox {kPa\,m}^{3}/\)\(\hbox {mol}\))

m :

2-D EOS constant (dimensionless)

M :

Mass of adsorbent (kg)

n :

Mole of components in adsorbed phase (mol)

NDP:

Number of data points

R :

Universal gas constant (\(\hbox {kPa}\,\hbox {m}^{3}/\hbox {mol}\,\hbox {K}\))

\(S_{1},S_{2}\) :

Terms in the isosteric heat of adsorption equations

T :

Temperature (K)

\(T_{1},T_{2}\) :

Terms in the fugacity equations of adsorbed phase in the TI model

\(\bar{{T}}_1 ,\bar{{T}}_2\) :

Terms in the fugacity equations of adsorbed phase in the TD model

U :

2-D EOS constant (dimensionless)

W :

2-D EOS constant (dimensionless)

x :

Mole fraction in adsorbed phase (dimensionless)

y :

Mole fraction in gas phase (dimensionless)

Z :

Compressibility factor of adsorbed phase (dimensionless)

\(\alpha \) :

Parameter of the TI 2-D EOS model (kPa, \(\hbox {m}^{3}\,\hbox {kg/mol}^{2}\))

\(\alpha _{1}\) :

Parameter of the TD model (kPa, \(\hbox {m}^{3}\,\hbox {kg/mol}^{2}\))

\(\alpha _{2}\) :

Parameter of the TD model (kPa, \(\hbox {m}^{3}\,\hbox {kg/K\,mol}^{2}\))

\(\beta \) :

Parameter of the TI 2-D EOS model (kg/mol)

\(\beta _{1}\) :

Parameter of the TD model (kg/mol)

\(\beta _{2}\) :

Parameter of the TD model (kg/mol K)

\(\theta \) :

Fractional loading in the TI model (dimensionless)

\(\bar{{\theta }}\) :

Fractional loading in the TD model (dimensionless)

\(\phi \) :

Fugacity coefficient (dimensionless)

\(\pi \) :

Spreading pressure (kPa m)

\(\varPsi \) :

Deviation from ideality of isotherms in the TI model (dimensionless)

\({\varPsi }'\) :

Deviation from ideality of Langmuir isotherm (dimensionless)

\(\bar{{\varPsi }}\) :

Deviation from ideality of isotherms in the TD model (dimensionless)

\(\omega \) :

Mole adsorbed per mass of adsorbent (mol/kg)

a:

Adsorbed phase

cal:

Calculated

exp:

Experimental

g:

Gas phase

st:

Isosteric

a:

Adsorbed phase

\(\textit{i,j}\) :

Components \(\textit{i,j}\) in mixture

mx:

Mixture

References

  1. Bakhtyari, A.; Mofarahi, M.: Pure and binary adsorption equilibria of methane and nitrogen on zeolite 5A. J. Chem. Eng. Data 59(3), 626–639 (2014)

    Article  Google Scholar 

  2. Mofarahi, M.; Bakhtyari, A.: Experimental investigation and thermodynamic modeling of CH\(_4\)/N\(_2\) adsorption on zeolite 13X. J. Chem. Eng. Data 60(3), 683–696 (2015)

    Article  Google Scholar 

  3. Danish, M.; et al.: Response surface methodology approach for methyl orange dye removal using optimized Acacia mangium wood activated carbon. Wood Sci. Technol. 48(5), 1085–1105 (2014)

    Article  Google Scholar 

  4. Danish, M.; et al.: Application of optimized large surface area date stone (Phoenix dactylifera) activated carbon for rhodamin B removal from aqueous solution: Box–Behnken design approach. Ecotoxicol. Environ. Saf. 139, 280–290 (2017)

    Article  Google Scholar 

  5. Nasrullah, A.; et al.: High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. Int. J. Biol. Macromol. 107, 1792–1799 (2018)

    Article  Google Scholar 

  6. Myers, A.; Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965)

    Article  Google Scholar 

  7. Myers, A.L.: Adsorption of gas mixtures—a thermodynamic approach. Ind. Eng. Chem. 60(5), 45–49 (1968)

    Article  Google Scholar 

  8. Suwanayuen, S.; Danner, R.P.: A gas adsorption isotherm equation based on vacancy solution theory. AIChE J. 26(1), 68–76 (1980)

    Article  Google Scholar 

  9. Suwanayuen, S.; Danner, R.P.: Vacancy solution theory of adsorption from gas mixtures. AIChE J. 26(1), 76–83 (1980)

    Article  Google Scholar 

  10. Cochran, T.W.; Kabel, R.L.; Danner, R.P.: Vacancy solution theory of adsorption using Flory–Huggins activity coefficient equations. AIChE J. 31(2), 268–277 (1985)

    Article  Google Scholar 

  11. Bering, B.; Dubinin, M.; Serpinsky, V.: Theory of volume filling for vapor adsorption. J. Colloid Interface Sci. 21(4), 378–393 (1966)

    Article  Google Scholar 

  12. Moon, H.; Tien, C.: Further work on the prediction of gas-mixture adsorption equilibrium using the potential theory. Sep. Technol. 3(3), 161–167 (1993)

    Article  Google Scholar 

  13. Shapiro, A.A.; Stenby, E.H.: Potential theory of multicomponent adsorption. J. Colloid Interface Sci. 201(2), 146–157 (1998)

    Article  Google Scholar 

  14. Prausnitz, J.M.; Lichtenthaler, R.N.; de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria. Pearson Education, London (1998)

    Google Scholar 

  15. de Boer, J.H.: The Dynamical Character of Adsorption, vol. 76. Oxford University Press, Oxford (1953)

    Google Scholar 

  16. Do, D.D.: Adsorption Analysis: Equilibria and Kinetics, vol. 2. Imperial College Press, London (1998)

    Book  Google Scholar 

  17. Ross, S.; Olivier, J.P.: On Physical Absorption. Interscience, New York (1964)

    Google Scholar 

  18. Hoory, S.; Prausnitz, J.: Monolayer adsorption of gas mixtures on homogeneous and heterogeneous solids. Chem. Eng. Sci. 22(7), 1025–1033 (1967)

    Article  Google Scholar 

  19. Haydel, J.J.; Kobayashi, R.: Adsorption equilibria in methane–propane–silica gel system at high pressures. Ind. Eng. Chem. Fundam. 6(4), 546–554 (1967)

    Article  Google Scholar 

  20. Payne, H.; Sturdevant, G.; Leland, T.: Improved two-dimensional equation of state to predict adsorption of pure and mixed hydrocarbons. Ind. Eng. Chem. Fundam. 7(3), 363–374 (1968)

    Article  Google Scholar 

  21. Friederich, R.O.; Mullins, J.C.: Adsorption equilibria of binary hydrocarbon mixtures on homogeneous carbon black at \(25^{\circ } \text{ C }\). Ind. Eng. Chem. Fundam. 11(4), 439–445 (1972)

    Article  Google Scholar 

  22. Sloan Jr., E.D.; Mullins, J.: Nonideality of binary adsorbed mixtures of benzene and Freon-11 on highly graphitized carbon at 298.15 K. Ind. Eng. Chem. Fundam. 14(4), 347–355 (1975)

    Article  Google Scholar 

  23. DeGance, A.; Morgan, W.; Yee, D.: High pressure adsorption of methane, nitrogen and carbon dioxide on coal substrates. Fluid Phase Equilib. 82, 215–224 (1993)

    Article  Google Scholar 

  24. DeGance, A.E.: Multicomponent high-pressure adsorption equilibria on carbon substrates: theory and data. Fluid Phase Equilib. 78, 99–137 (1992)

    Article  Google Scholar 

  25. Garbacz, J.; et al.: Equation of physical adsorption on a homogeneous surface based on a two-dimensional analog of the Beattie–Bridgeman equation of a real gas state. Colloids Surf. A Physicochem. Eng. Aspects 119(2–3), 215–220 (1996)

    Article  Google Scholar 

  26. Zheng, Y.; Gu, T.: Modified van der Waals Equation for the prediction of multicomponent isotherms. J. Colloid Interface Sci. 206(2), 457–463 (1998)

    Article  Google Scholar 

  27. Zhou, C.: Modeling and Prediction of Pure and Multicomponent Gas Adsorption. Oklahoma State University, Stillwater (1994)

    Google Scholar 

  28. Zhou, C.; et al.: Predicting gas adsorption using two-dimensional equations of state. Ind. Eng. Chem. Res. 33(5), 1280–1289 (1994)

    Article  Google Scholar 

  29. Sudibandriyo, M.; et al.: Adsorption of methane, nitrogen, carbon dioxide, and their binary mixtures on dry activated carbon at 318.2 K and pressures up to 13.6 MPa. Langmuir 19(13), 5323–5331 (2003)

    Article  Google Scholar 

  30. Fitzgerald, J.; et al.: Adsorption of methane, nitrogen, carbon dioxide and their mixtures on wet Tiffany coal. Fuel 84(18), 2351–2363 (2005)

    Article  Google Scholar 

  31. Peng, X.; et al.: Adsorption separation of CH\(_4\)/CO\(_2\) on mesocarbon microbeads: experiment and modeling. AIChE J. 52(3), 994–1003 (2006)

    Article  Google Scholar 

  32. Mofarahi, M.; Hashemifard, S.: New mixing rule for predicting multi-component gas adsorption. Adsorption 17(2), 311–323 (2011)

    Article  Google Scholar 

  33. Fotoohi, F.; et al.: Predicting pure and binary gas adsorption on activated carbon with two-dimensional cubic equations of state (2-D EOSs) and artificial neural network (ANN) method. Phys. Chem. Liq. 54(3), 281–302 (2016)

    Article  Google Scholar 

  34. Van Ness, H.: Adsorption of gases on solids. Review of role of thermodynamics. Ind. Eng. Chem. Fundam. 8(3), 464–473 (1969)

    Article  Google Scholar 

  35. Talu, O.; Kabel, R.: Isosteric heat of adsorption and the vacancy solution model. AIChE J. 33(3), 510–514 (1987)

    Article  Google Scholar 

  36. Nieszporek, K.: Theoretical description of the calorimetric effects accompanying the mixed-gas adsorption equilibria by using the ideal adsorbed solution theory. Langmuir 18(24), 9334–9341 (2002)

    Article  Google Scholar 

  37. Nieszporek, K.: The application of NIAS approach to describe enthalpic effects accompanying mixed-gas adsorption. Appl. Surf. Sci. 207(1–4), 208–218 (2003)

    Article  Google Scholar 

  38. Nieszporek, K.: Potential Theory approach as a powerful tool in theoretical prediction of mixed-gas adsorption equilibria and their accompanying calorimetric effects. Chem. Eng. Sci. 60(10), 2763–2769 (2005)

    Article  Google Scholar 

  39. Nieszporek, K.: Application of the vacancy solution theory to describe the enthalpic effects accompanying mixed-gas adsorption. Langmuir 22(23), 9623–9631 (2006)

    Article  Google Scholar 

  40. Bhadra, S.J.; Ebner, A.D.; Ritter, J.A.: On the use of the dual process Langmuir model for predicting unary and binary isosteric heats of adsorption. Langmuir 28(17), 6935–6941 (2012)

    Article  Google Scholar 

  41. Calleja, G.; Pau, J.; Calles, J.: Pure and multicomponent adsorption equilibrium of carbon dioxide, ethylene, and propane on ZSM-5 zeolites with different Si/Al ratios. J. Chem. Eng. Data 43(6), 994–1003 (1998)

    Article  Google Scholar 

  42. Talu, O.; Zwiebel, I.: Multicomponent adsorption equilibria of nonideal mixtures. AIChE J. 32(8), 1263–1276 (1986)

    Article  Google Scholar 

  43. Chen, Y.; Ritter, J.; Yang, R.: Nonideal adsorption from multicomponent gas mixtures at elevated pressures on a 5A molecular sieve. Chem. Eng. Sci. 45(9), 2877–2894 (1990)

    Article  Google Scholar 

  44. Hyun, S.H.; Danner, R.P.: Equilibrium adsorption of ethane, ethylene, isobutane, carbon dioxide, and their binary mixtures on 13X molecular sieves. J. Chem. Eng. Data 27(2), 196–200 (1982)

    Article  Google Scholar 

  45. Ritter, J.; Yang, R.: Equilibrium adsorption of multicomponent gas mixtures at elevated pressures. Ind. Eng. Chem. Res. 26(8), 1679–1686 (1987)

    Article  Google Scholar 

  46. Reich, R.; Ziegler, W.T.; Rogers, K.A.: Adsorption of methane, ethane, and ethylene gases and their binary and ternary mixtures and carbon dioxide on activated carbon at 212–301 K and pressures to 35 atmospheres. Ind. Eng. Chem. Process Design Dev. 19(3), 336–344 (1980)

    Article  Google Scholar 

  47. Gumma, S.: On Measurement, Analysis and Modeling of Mixed Gas Adsorption Equilibria. Cleveland State University, Cleveland (2003)

    Google Scholar 

  48. Nolan, J.T.; McKeehan, T.W.; Danner, R.P.: Equilibrium adsorption of oxygen, nitrogen, carbon monoxide, and their binary mixtures on molecular sieve type 10X. J. Chem. Eng. Data 26(2), 112–115 (1981)

    Article  Google Scholar 

  49. Qiao, S.; Wang, K.; Hu, X.: Study of binary adsorption equilibrium of hydrocarbons in activated carbon using micropore size distribution. Langmuir 16(11), 5130–5136 (2000)

    Article  Google Scholar 

  50. Loughlin, K.; Hasanain, M.; Abdul-Rehman, H.: Quaternary, ternary, binary, and pure component sorption on zeolites. 2. Light alkanes on Linde 5A and 13X zeolites at moderate to high pressures. Ind. Eng. Chem. Res. 29(7), 1535–1546 (1990)

    Article  Google Scholar 

  51. Costa, E.; et al.: Adsorption equilibrium of ethylene, propane, propylene, carbon dioxide, and their mixtures on 13X zeolite. J. Chem. Eng. Data 36(2), 218–224 (1991)

    Article  Google Scholar 

  52. Danner, R.P.; Choi, E.C.: Mixture adsorption equilibria of ethane and ethylene on 13X molecular sieves. Ind. Eng. Chem. Fundam. 17(4), 248–253 (1978)

    Article  Google Scholar 

  53. He, Y.; Yun, J.-H.; Seaton, N.A.: Adsorption equilibrium of binary methane/ethane mixtures in BPL activated carbon: isotherms and calorimetric heats of adsorption. Langmuir 20(16), 6668–6678 (2004)

    Article  Google Scholar 

  54. Al-Baghli, N.A.; Loughlin, K.F.: Adsorption of methane, ethane, and ethylene on titanosilicate ETS-10 zeolite. J. Chem. Eng. Data 50(3), 843–848 (2005)

    Article  Google Scholar 

  55. Al-Baghli, N.A.; Loughlin, K.F.: Binary and ternary adsorption of methane, ethane, and ethylene on titanosilicate ETS-10 zeolite. J. Chem. Eng. Data 51(1), 248–254 (2006)

    Article  Google Scholar 

  56. Abdul-Rehman, H.; Hasanain, M.; Loughlin, K.: Quaternary, ternary, binary, and pure component sorption on zeolites. 1. Light alkanes on Linde S-115 silicalite at moderate to high pressures. Ind. Eng. Chem. Res. 29(7), 1525–1535 (1990)

    Article  Google Scholar 

  57. Nakahara, T.; Hirata, M.; Omori, T.: Adsorption of hydrocarbons on a carbon molecular sieve. J. Chem. Eng. Data 19(4), 310–313 (1974)

    Article  Google Scholar 

  58. Nakahara, T.; Hirata, M.; Mori, H.: Adsorption of a gaseous mixture of ethylene and propylene on a carbon molecular sieve. J. Chem. Eng. Data 27(3), 317–320 (1982)

    Article  Google Scholar 

  59. Nakahara, T.; et al.: Adsorption of binary gaseous mixtures of ethylene–ethane and ethylene–propylene on a carbon molecular sieve. J. Chem. Eng. Data 29(2), 202–204 (1984)

    Article  Google Scholar 

  60. Nakahara, T.; Wakai, T.: Adsorption of ethylene/ethane mixtures on a carbon molecular sieve. J. Chem. Eng. Data 32(1), 114–117 (1987)

    Article  Google Scholar 

  61. Wu, Q.; et al.: Adsorption equilibrium of the mixture \(\text{ CH }_4+ \text{ N }_2+ \text{ H }_2\) on activated carbon. J. Chem. Eng. Data 50(2), 635–642 (2005)

    Article  Google Scholar 

  62. Dunne, J.; et al.: Calorimetric heats of adsorption and adsorption isotherms. 1. \(\text{ O }_2, \text{ N }_2, \text{ Ar }, \text{ CO }_2, \text{ CH }_4, \text{ C }_2\text{ H }_6\), and \(\text{ SF }_6\) on silicalite. Langmuir 12(24), 5888–5895 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Persian Gulf University, for the financial support, and for granting the required approval for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Mofarahi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 155 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtyari, A., Mofarahi, M. A New Approach in Predicting Gas Adsorption Isotherms and Isosteric Heats Based on Two-Dimensional Equations of State. Arab J Sci Eng 44, 5513–5526 (2019). https://doi.org/10.1007/s13369-019-03838-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03838-2

Keywords

Navigation