Skip to main content
Log in

Performance Assessment and Solution Procedure for Series Flow Double-Effect Absorption Refrigeration Systems Under Critical Operating Constraints

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the effects of critical operational constraints on the operational domain of a double-effect lithium bromide/water absorption refrigeration system and its performance were investigated. These constraints were determined as the equivalence state of concentrations, the thermal unbalance between the system components of high-pressure condenser and low-pressure generator, freezing and crystallization risk of lithium bromide/water solution. For the system analysis, a simulation program was developed, and its detailed solution procedure was presented. The program outputs were initially validated with the literature. Subsequently, parametric studies were conducted for broad ranges of the component temperatures. The results demonstrate that the considered constraints were essential for acceptable design and the operational control of double-effect absorption refrigeration systems. The simulations will help to figure out under which operating conditions a double-effect absorption refrigeration system functions effectively and what kind of control strategies are essentially required to increase the coefficient of performance. Based on the operation scenario of fixed high-pressure generator temperature, the proposed system can enhance the coefficient of performance up to 31% and 84% as compared to its counterparts which function under the variable high-pressure generator temperature and the pinch point temperature difference (5 K between the high-pressure condenser and the low-pressure generator), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

f :

Circulation ratio

h :

Enthalpy, kJ/kg

\(\dot{m}\) :

Mass flow rate, kg/s

P :

Pressure, kPa

Q :

Heat capacity, kJ/kg

\(\dot{Q}\) :

Heat transfer rate, kW

T :

Temperature, \({^{\circ }}\hbox {C}\)

W :

Specific pump work, kJ/kg

\(\dot{W}\) :

Power, kW

X :

Concentration or mass fraction of lithium bromide, %

\(\varepsilon \) :

Effectiveness

\(\eta \) :

Efficiency

\(\upsilon \) :

Specific volume, \(\hbox {m}^{3}/\hbox {kg}\)

A:

Absorber

C:

Condenser

cr:

Crystallization

e:

Exit

E:

Evaporator

f:

Freezing

HPC:

High-pressure condenser

HPG:

High-pressure generator

\(\hbox {H}_{2}\hbox {O}\) :

Water

i:

Inlet

P:

Pump

LPG:

Low-pressure generator

s:

Strong solution

v:

Vapor

w:

Weak solution

ARS:

Absorption refrigeration system

COP:

Coefficient of performance

DEARS:

Double-effect absorption refrigeration system

EV:

Expansion valve

HPC:

High-pressure condenser

HPG:

High-pressure generator

LiBr/\(\hbox {H}_{2}\hbox {O}\) :

Lithium bromide/water

LPG:

Low-pressure generator

SHE I:

Solution heat exchanger I

SHE II:

Solution heat exchanger II

References

  1. Dincer, I.; Ratlamwala, T.A.H.: Integrated Absorption Refrigeration Systems: Comparative Energy and Exergy Analyses. Springer, Berlin (2016)

    Book  Google Scholar 

  2. Kurtulmuş, N.; Horuz, İ.: An industrial vapor absorption air conditioning application. J. Therm. Sci. Technol. 36, 49–60 (2017)

    Google Scholar 

  3. Wouagfack, P.A.N.; Tchinda, R.: Optimal performance of an absorption refrigerator based on maximum ECOP. Int. J. Refrig. 40, 404–415 (2014)

    Article  Google Scholar 

  4. Gebreslassie, B.H.; Medrano, M.; Boer, D.: Exergy analysis of multi-effect water-LiBr absorption systems: from half to triple effect. Renew. Energy 35, 1773–1782 (2010)

    Article  Google Scholar 

  5. Karamangil, M.; Coskun, S.; Kaynakli, O.; Yamankaradeniz, N.: A simulation study of performance evaluation of single-stage absorption refrigeration system using conventional working fluids and alternatives. Renew. Sustain. Energy Rev. 14, 1969–1978 (2010)

    Article  Google Scholar 

  6. Cimşit, C.; Öztürk, İ.T.: Buhar sıkıştırmalı-absorbsiyonlu çift kademeli soğutma çevrimi ve alternatif çevrimlerle karşılaştırılması. Isı Bilimi ve Tekniği Dergisi 34, 19–26 (2014)

    Google Scholar 

  7. Farshi, L.G.; Mahmoudi, S.S.; Rosen, M.: Analysis of crystallization risk in double effect absorption refrigeration systems. Appl. Therm. Eng. 31, 1712–1717 (2011)

    Article  Google Scholar 

  8. Saka, K.; Yılmaz, İ.H.; Kaynaklı, Ö.: Investigation on double effect dual-heated absorption refrigeration system. In: XII International HVAC+R Technology Symposium, pp. 123–129. Istanbul, Turkey (2016)

  9. Yılmaz, İ.H.; Saka, K.; Kaynaklı, Ö.: Influence of the equilibrium temperature in the double stage of the absorption refrigeration system. In: 8th International Ege Energy Symposium and Exhibition, Afyonkarahisar, pp. 46–51 (2016)

  10. Saka, K.; Yılmaz, İ.H.; Göksu, T.T.: Üç-kademeli bir soğurmalı soğutma sisteminde kaynatıcılara bağlı enerji ve ekserji analizi. Gazi Mühendislik Bilimleri Dergisi 4, 67–76 (2018)

    Google Scholar 

  11. Ziegler, F.; Kahn, R.; Summerer, F.; Alefeld, G.: Multi-effect absorption chillers. In. J. Refrig. 16, 301–311 (1993)

    Article  Google Scholar 

  12. Arun, M.; Maiya, M.; Murthy, S.S.: Equilibrium low pressure generator temperatures for double-effect series flow absorption refrigeration systems. Appl. Therm. Eng. 20, 227–242 (2000)

    Article  Google Scholar 

  13. Yılmaz, İ.H.; Saka, K.; Kaynakli, O.: A thermodynamic evaluation on high pressure condenser of double effect absorption refrigeration system. Energy 113, 1031–1041 (2016)

    Article  Google Scholar 

  14. Kaushik, S.; Chandra, S.: Computer modeling and parametric study of a double effect generation absorption refrigeration cycle. Energy Convers. Manag. 25, 9–14 (1985)

    Article  Google Scholar 

  15. Vliet, G.; Lawson, M.; Lithgow, R.: Water–lithium bromide double-effect absorption cooling cycle analysis. ASHRAE Trans. 5, 811–823 (1982)

    Google Scholar 

  16. Xu, G.; Dai, Y.; Tou, K.; Tso, C.: Theoretical analysis and optimization of a double-effect series-flow-type absorption chiller. Appl. Therm. Eng. 16, 975–987 (1996)

    Article  Google Scholar 

  17. Gomri, R.; Hakimi, R.: Second law analysis of double effect vapour absorption cooler system. Energy Convers. Manag. 49, 3343–3348 (2008)

    Article  Google Scholar 

  18. Kaynakli, O.; Saka, K.; Kaynakli, F.: Energy and exergy analysis of a double effect absorption refrigeration system based on different heat sources. Energy Convers. Manag. 106, 21–30 (2015)

    Article  Google Scholar 

  19. Anand, D.; Kumar, B.: Absorption machine irreversibility using new entropy calculations. Sol. Energy 39, 243–256 (1987)

    Article  Google Scholar 

  20. Kaushik, S.; Arora, A.: Energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption refrigeration systems. Int. J. Refrig. 32, 1247–1258 (2009)

    Article  Google Scholar 

  21. Arora, A.; Kaushik, S.: Theoretical analysis of LiBr/H\(_2\)O absorption refrigeration systems. Int. J. Energy Res. 33, 1321–1340 (2009)

    Article  Google Scholar 

  22. Mali, N.A.; Bhagwat, S.S.: Mapping of optimum operating condition for LiBr–water refrigeration cycles. Sādhanā 42, 257–269 (2017)

    Google Scholar 

  23. Khaliq, A.; Kumar, R.: Exergy analysis of double effect vapor absorption refrigeration system. Int. J. Energy Res. 32, 161–174 (2008)

    Article  Google Scholar 

  24. Farshi, L.; Mahmoudi, S.; Rosen, M.; Yari, M.: A comparative study of the performance characteristics of double-effect absorption refrigeration systems. Int. J. Energy Res. 36, 182–192 (2012)

    Article  Google Scholar 

  25. Wang, K.; Abdelaziz, O.; Kisari, P.; Vineyard, E.A.: State-of-the-art review on crystallization control technologies for water/LiBr absorption heat pumps. Int. J. Refrig. 34, 1325–1337 (2011)

    Article  Google Scholar 

  26. Marcos, J.; Izquierdo, M.; Palacios, E.: New method for COP optimization in water-and air-cooled single and double effect LiBr–water absorption machines. Int. J. Refrig. 34, 1348–1359 (2011)

    Article  Google Scholar 

  27. Farshi, L.G.; Mahmoudi, S.S.; Rosen, M.A.; Yari, M.: Use of low grade heat sources in combined ejector-double effect absorption refrigeration systems. Proc. Inst. Mech. Eng. Part A J. Power Energy 226, 607–622 (2012)

    Article  Google Scholar 

  28. Li, Z.; Liu, L.; Liu, J.: Variation and design criterion of heat load ratio of generator for air cooled lithium bromide–water double effect absorption chiller. Appl. Therm. Eng. 96, 481–489 (2016)

    Article  Google Scholar 

  29. Bellos, E.; Tzivanidis, C.; Pavlovic, S.; Stefanovic, V.: Thermodynamic investigation of LiCl–H\(_2\)O working pair in a double effect absorption chiller driven by parabolic trough collectors. Therm. Sci. Eng. Prog. 3, 75–87 (2017)

    Article  Google Scholar 

  30. Farshi, L.G.; Mahmoudi, S.S.; Rosen, M.; Yari, M.; Amidpour, M.: Exergoeconomic analysis of double effect absorption refrigeration systems. Energy Convers. Manag. 65, 13–25 (2013)

    Article  Google Scholar 

  31. Farshi, L.G.; Mahmoudi, S.S.; Rosen, M.: Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems. Appl. Energy 103, 700–711 (2013)

    Article  Google Scholar 

  32. Avanessian, T.; Ameri, M.: Energy, exergy, and economic analysis of single and double effect LiBr–H\(_2\)O absorption chillers. Energy Build. 73, 26–36 (2014)

    Article  Google Scholar 

  33. Hamed, A.; Kaseb, S.A.; Hanafi, A.S.: Prediction of energetic and exergetic performance of double-effect absorption system. Int. J. Hydrog. Energy 40, 15320–15327 (2015)

    Article  Google Scholar 

  34. Yamankaradeniz, R.; Horuz, İ.; Kaynaklı, Ö.; Çoşkun, S.; Yamankaradeniz, N.: Soğutma Tekniği ve Isı Pompası Uygulamaları. Dora Yayınları, Bursa (2013)

    Google Scholar 

  35. Kaynakli, O.; Kilic, M.: Theoretical study on the effect of operating conditions on performance of absorption refrigeration system. Energy Convers. Manag. 48, 599–607 (2007)

    Article  Google Scholar 

  36. Mostafavi, M.; Agnew, B.: The impact of ambient temperature on lithium-bromide/water absorption machine performance. Appl. Therm. Eng. 16, 515–522 (1996)

    Article  Google Scholar 

  37. Chua, H.; Toh, H.; Malek, A.; Ng, K.; Srinivasan, K.: Improved thermodynamic property fields of LiBr–H\(_2\)O solution. Int. J. Refrig. 23, 412–429 (2000)

    Article  Google Scholar 

  38. Wonchala, J.; Hazledine, M.; Boulama, K.G.: Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine. Energy 65, 272–284 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Halil Yılmaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, İ.H., Saka, K., Kaynaklı, Ö. et al. Performance Assessment and Solution Procedure for Series Flow Double-Effect Absorption Refrigeration Systems Under Critical Operating Constraints. Arab J Sci Eng 44, 5997–6011 (2019). https://doi.org/10.1007/s13369-019-03805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03805-x

Keywords

Navigation