Skip to main content
Log in

Enzymatic Desulfurization of Crude Oil and Its Fractions: A Mini Review on the Recent Progresses and Challenges

  • Review - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The worldwide increasing demand for environmentally-friendly transportation fuels and the strict regulations by the environmental protection agencies have put a great pressure on crude oil refining and upgrading industry. The main current technology for the desulfurization of crude oil and its fractions is hydrodesulfurization. However, this process is plagued with several drawbacks. The growing pressure on petroleum refining industries to reduce sulfur contents in fuels has made hydrodesulfurization process even more unappealing. Hence, more effective alternatives have been (and are still) sought by petroleum refining industries. Enzymatic desulfurization process has recently emerged as a promising alternative that has the potential to be cost-effective, efficient and environmental-friendly. In enzymatic desulfurization process, enzymes (whether intracellular or extracellular) attack organosulfur components in the crude oil or its fractions and remove sulfur through a series of enzymatic reactions. The process is an energy-saving process, devoid of emission of harmful gases into the atmosphere, and utilizes completely biodegradable catalysts. This article reviews the recent progress in desulfurization of crude oil and its fractions using extracellular and intracellular enzymes. Challenges encountered during enzymatic desulfurization are highlighted, and some potential solutions to tackle the challenges are proposed. Future outlooks into the development of more efficient enzymatic desulfurization processes have been pinpointed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sadare, O.O.; Obazu, F.; Daramola, M.O.: Biodesulfurization of petroleum distillates—current status, opportunities and future challenges. Environments 4, 85 (2017)

    Google Scholar 

  2. Pope III, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; et al.: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287, 1132–41 (2002)

    Google Scholar 

  3. Stanislaus, A.; Marafi, A.; Rana, M.S.: Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal. Today 153, 1–68 (2010)

    Google Scholar 

  4. Li, S.; Mominou, N.; Wang, Z.; Liu, L.; Wang, L.: Ultra-deep desulfurization of gasoline with CuW/TiO\(_{2}\)-GO through photocatalytic oxidation. Energy Fuels 30, 962–7 (2016)

    Google Scholar 

  5. Mohebali, G.; Ball, A.S.: Biodesulfurization of diesel fuels–past, present and future perspectives. Int. Biodeterior. Biodegrad. 110, 163–80 (2016)

    Google Scholar 

  6. Breysse, M.; Djega-Mariadassou, G.; Pessayre, S.; Geantet, C.; Vrinat, M.; Pérot, G.; et al.: Deep desulfurization: reactions, catalysts and technological challenges. Catal. Today 84, 129–38 (2003)

    Google Scholar 

  7. Shan, J.-H.; Chen, L.; Sun, L.-B.; Liu, X.-Q.: Adsorptive removal of thiophene by cu-modified mesoporous silica MCM-48 derived from direct synthesis. Energy Fuels 25, 3093–9 (2011)

    Google Scholar 

  8. Li, C.; Jiang, Z.; Gao, J.; Yang, Y.; Wang, S.; Tian, F.; et al.: Ultra-deep desulfurization of diesel: oxidation with a recoverable catalyst assembled in emulsion. Chemistry 10, 2277–80 (2002)

    Google Scholar 

  9. Le Borgne, S.; Quintero, R.: Biotechnological processes for the refining of petroleum. Fuel Process. Technol. 81, 155–69 (2003)

    Google Scholar 

  10. Ganiyu, S.A.; Ajumobi, O.O.; Lateef, S.F.; Sulaiman, K.O.; Bakare, I.A.; Qamaruddin, M.; et al.: Boron-doped activated carbon as efficient and selective adsorbent for ultra-deep desulfurization of 4,6-dimethyldibenzothiophene. Chem. Eng. J. 321, 651–61 (2017)

    Google Scholar 

  11. Qiu, J.; Wang, G.; Zeng, D.; Tang, Y.; Wang, M.; Li, Y.: Oxidative desulfurization of diesel fuel using amphiphilic quaternary ammonium phosphomolybdate catalysts. Fuel Process. Technol. 90, 1538–42 (2009)

    Google Scholar 

  12. Jiang, W.; Dong, L.; Liu, W.; Guo, T.; Li, H.; Yin, S.; et al.: Biodegradable choline-like deep eutectic solvents for extractive desulfurization of fuel. Chem. Eng. Process.: Process Intensif. 115, 34–8 (2017)

    Google Scholar 

  13. Zhou, A.; Ma, X.; Song, C.: Effects of oxidative modification of carbon surface on the adsorption of sulfur compounds in diesel fuel. Appl. Catal. B: Environ. 87, 190–9 (2009)

    Google Scholar 

  14. Bordoloi, N.K.; Rai, S.K.; Chaudhuri, M.K.; Mukherjee, A.K.: Deep-desulfurization of dibenzothiophene and its derivatives present in diesel oil by a newly isolated bacterium Achromobacter sp. to reduce the environmental pollution from fossil fuel combustion. Fuel Process. Technol. 119, 236–244 (2014)

    Google Scholar 

  15. Moradi, M.; Karimzadeh, R.; Moosavi, E.S.: Modified and ion exchanged clinoptilolite for the adsorptive removal of sulfur compounds in a model fuel: new adsorbents for desulfurization. Fuel 217, 467–77 (2018)

    Google Scholar 

  16. Prajapati, Y.N.; Verma, N.: Fixed bed adsorptive desulfurization of thiophene over Cu/Ni-dispersed carbon nanofiber. Fuel 216, 381–9 (2018)

    Google Scholar 

  17. Ren, X.; Liu, Z.; Dong, L.; Miao, G.; Liao, N.; Li, Z.; et al.: Dynamic catalytic adsorptive desulfurization of real diesel over ultra-stable and low-cost silica gel-supported TiO\(_{2}\). AIChE J. 64, 2146–59 (2018)

    Google Scholar 

  18. Shen, D.; Dai, Y.; Han, J.; Gan, L.; Liu, J.; Long, M.: A nanocellulose template strategy for the controllable synthesis of tungsten-containing mesoporous silica for ultra-deep oxidative desulfurization. Chem. Eng. J. 332, 563–71 (2018)

    Google Scholar 

  19. de Luna, M.D.G.; Samaniego, M.L.; Ong, D.C.; Wan, M.-W.; Lu, M.-C.: Kinetics of sulfur removal in high shear mixing-assisted oxidative-adsorptive desulfurization of diesel. J. Clean. Prod. 178, 468–75 (2018)

    Google Scholar 

  20. Xu, H.; Zhang, D.; Wu, F.; Wei, X.; Zhang, J.: Deep desulfurization of fuels with cobalt chloride-choline chloride/polyethylene glycol metal deep eutectic solvents. Fuel 225, 104–10 (2018)

    Google Scholar 

  21. Siwen Li, S.; Gao, R.; Zhao, J.: Deep oxidative desulfurization of fuel catalyzed by modified heteropolyacid -the comparison performance of three kinds of ionic liquids. ACS Sustain. Chem. Eng. (2018). https://doi.org/10.1021/acssuschemeng.8b04524

    Google Scholar 

  22. Kędra-Królik, K.; Cesari, L.; Mutelet, F.; Rogalski, M.: Capacity enhancement of ionic liquids-based nanofluid for fuels desulfurization purposes. Ind. Eng. Chem Res. (2018). https://doi.org/10.1021/acs.iecr.8b02905

    Google Scholar 

  23. Wang, L.; Zhang, L.; Sun, Y.; Jiang, B.; Chen, Y.; Gao, X.; et al.: Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids. Fuel Process. Technol. 177, 81–88 (2018)

    Google Scholar 

  24. Ahmed, O.U.; Mjalli, F.S.; Al-Wahaibi, T.; Al-Wahaibi, Y.; Al Nashef, I.M.: Extractive desulfurization of liquid fuel using modified pyrollidinium and phosphonium based ionic liquid solvents. J. Solut. Chem. 47, 468–83 (2018)

    Google Scholar 

  25. Onaizi, S.A.; He, L.; Middelberg, A.P.J.: Rapid screening of surfactant and biosurfactant surface cleaning performance. Colloids Surf. B: Biointerfaces 72, 68–74 (2009)

    Google Scholar 

  26. Onaizi, S.A.; Malcolm, A.S.; He, L.; Middelberg, A.P.J.: Directed disassembly of an interfacial rubisco protein network. Langmuir 23, 6336–41 (2007)

    Google Scholar 

  27. Onaizi, S.A.; He, L.; Middelberg, A.P.J.: Proteolytic cleaning of a surface-bound rubisco protein stain. Chem. Eng. Sci. 64, 3868–78 (2009)

    Google Scholar 

  28. Onaizi, S.A.; He, L.; Middelberg, A.P.J.: The construction, fouling and enzymatic cleaning of a textile dye surface. J. Colloid Interface Sci. 351, 203–9 (2010)

    Google Scholar 

  29. He, L.; Onaizi, S.A.; Dimitrijev-Dwyer, M.; Malcolm, A.S.; Shen, H.-H.; Dong, C.; et al.: Comparison of positional surfactant isomers for displacement of rubisco protein from the air-water interface. J. Colloid Interface Sci. 360, 617–22 (2011)

    Google Scholar 

  30. Onaizi, S.A.: Enzymatic removal of protein fouling from self-assembled cellulosic nanofilms: experimental and modeling studies. Eur. Biophys. J. (2018). https://doi.org/10.1007/s00249-018-1320-4

    Google Scholar 

  31. El-Gendy, N.S.; Speight, J.G.: Handbook of Refinery Desulfurization. CRC Press, Boca Raton (2016)

    Google Scholar 

  32. Vazquez-Duhalt, R.; Quintero-Ramirez, R.: Petroleum biotechnology: developments and perspectives. In: Centi, G. (ed.) Studies in Surface Science and Catalysis. Elsevier, Amsterdam (2004)

    Google Scholar 

  33. Wang, M.; Ren, L.; Han, Y.; Xu, C.; Chung, K.H.; Shi, Q.: Refractory cyclic sulfidic compounds in deeply hydrodesulfurized diesels. Energy Fuels 31, 3838–42 (2017)

    Google Scholar 

  34. Gogoi, B.K.; Bezbaruah, R.L.: Microbial degradation of sulfur compounds present in coal and petroleum. Prog. Ind. Microbiol. 36, 427–56 (2002)

    Google Scholar 

  35. Bhasarkar, J.; Jyoti, A.; Goswami, P.; Moholkar, V.S.: Mechanistic analysis of ultrasound assisted enzymatic desulfurization of liquid fuels using horseradish peroxidase. Bioresour. Technol. 196, 88–98 (2015)

    Google Scholar 

  36. Borzenkova, N.V.; Veselova, I.A.; Shekhovtsova, T.N.: Biochemical methods of crude hydrocarbon desulfurization. Biol. Bullet. Rev. 3, 296–311 (2013)

    Google Scholar 

  37. Juarez-Moreno, K.; de León, J.N.D.; Zepeda, T.A.; Vazquez-Duhalt, R.; Fuentes, S.: Oxidative transformation of dibenzothiophene by chloroperoxidase enzyme immobilized on (1D)-\(\gamma -\) Al\(_{2}\)O\(_{3}\) nanorods. J. Mol. Catal. B: Enzymatic 115, 90–5 (2015)

    Google Scholar 

  38. Han, Y.J.; Watson, J.T.; Stucky, G.D.; Butler, A.: Catalytic activity of mesoporous silicate-immobilized chloroperoxidase. J. Mol. Catal. B: Enzymatic 17, 1–8 (2002)

    Google Scholar 

  39. Montiel, C.; Terres, E.; Domínguez, J.M.; Aburto, J.: Immobilization of chloroperoxidase on silica-based materials for 4,6-dimethyl dibenzothiophene oxidation. J. Mol. Catal. B: Enzymatic 48, 90–8 (2007)

    Google Scholar 

  40. Ayala, M.; Hernandez-Lopez, E.L.; Perezgasga, L.; Vazquez-Duhalt, R.: Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil. Fuel 92, 245–9 (2012)

    Google Scholar 

  41. Petri, A.; Gambicorti, T.; Salvadori, P.: Covalent immobilization of chloroperoxidase on silica gel and properties of the immobilized biocatalyst. J. Mol. Catal. B: Enzymatic 27, 103–6 (2004)

    Google Scholar 

  42. Ayala, M.; Verdin, J.; Vazquez-Duhalt, R.: The prospects for peroxidase-based biorefining of petroleum fuels. Biocatal. Biotransform. 25, 114–29 (2007)

    Google Scholar 

  43. Aburto, P.; Zunniga, K.; Campos-Teran, J.; Aburto, J.; Torres, E.: Quantitative analysis of sulfur in diesel by enzymatic oxidation, steady-state fluorescence, and linear regression analysis. Energy Fuels 28, 403–8 (2014)

    Google Scholar 

  44. Singh, M.P.; Kumar, M.; Kalsi, W.R.; Pulikottil, A.C.; Sarin, R.; Tuli, D.K.; et al.: Method for bio-oxidative desulfurization of liquid hydrocarbon fuels and product thereof, United States (2009)

  45. Terres, E.; Montiel, M.; Le Borgne, S.; Torres, E.: Immobilization of chloroperoxidase on mesoporous materials for the oxidation of 4,6-dimethyldibenzothiophene, a recalcitrant organic sulfur compound present in petroleum fractions. Biotechnol. Lett. 30, 173–9 (2008)

    Google Scholar 

  46. Ayala, M.; Robledo, N.R.; Lopez-Munguia, A.; Vazquez-Duhalt, R.: Substrate specificity and ionization potential in chloroperoxidase- catalyzed oxidation of diesel fuel. Environ. Sci. Technol. 34, 2804–9 (2000)

    Google Scholar 

  47. Aburto, J.; Ayala, M.; Bustos-Jaimes, I.; Montiel, C.; Terres, E.; Domınguez, J.M.; et al.: Stability and catalytic properties of chloroperoxidase immobilized on SBA-16 mesoporous materials. Microporous Mesoporous Mater. 83, 193–200 (2005)

    Google Scholar 

  48. Ryu, K.; Heo, J.; Yoo, I.-K.: Removal of dibenzothiophene and its oxidized product in anhydrous water-immiscible organic solvents by immobilized cytochrome c. Biotechnol. Lett. 24(24), 143–6 (2002)

    Google Scholar 

  49. Porto, B.; Maass, D.; Oliveira, J.V.; de Oliveira, D.; Yamamoto, C.I.; de Souza, A.A.U.; et al.: Heavy gas oil biodesulfurization using a low-cost bacterial consortium. J. Chem. Technol. Biotechnol. 93, 2359–63 (2018)

    Google Scholar 

  50. Akhtar, N.; Akhtar, K.; Ghauri, M.A.: Biodesulfurization of thiophenic compounds by a 2-hydroxybiphenyl-resistant Gordonia sp. HS126-4N carrying dszABC genes. Curr. Microbiol. 75, 597–603 (2018)

    Google Scholar 

  51. Bhanjadeo, M.M.; Rath, K.; Gupta, D.; Pradhan, N.; Biswal, S.K.; Mishra, B.K.; et al.: Differential desulfurization of dibenzothiophene by newly identified MTCC strains: influence of operon array. PLOS One (2018). https://doi.org/10.1371/journal.pone.0192536

    Google Scholar 

  52. Etemadi, N.; Sepahy, A.A.; Mohebali, G.; Yazdian, F.; Omidi, M.: Enhancement of bio-desulfurization capability of a newly isolated thermophilic bacterium using starch/iron nanoparticles in a controlled system. Int. J. Biol. Macromol. 120, 1801–9 (2018)

    Google Scholar 

  53. Grossman, M.J.; Lee, M.K.; Prince, R.C.; Minak-Bernero, V.; George, G.N.; Pickering, I.J.: Deep desulfurization of extensively hydrodesulfurized middle distillate oil by Rhodococcus sp. Strain ECRD-1. Appl. Environ. Microbiol. 67, 1949–1952 (2001)

    Google Scholar 

  54. Pan, J.; Wu, F.; Wang, J.; Yu, L.; Khayyat, N.H.; Stark, B.C.; et al.: Enhancement of desulfurization activity by enzymes of the Rhodococcus dsz operon through coexpression of a high sulfur peptide and directed evolution. Fuel 112, 385–90 (2013)

    Google Scholar 

  55. Alkhalili, B.E.; Yahya, A.; Abrahim, N.; Ganapathy, B.: Biodesulfurization of sour crude oil. Mod. Appl. Sci. 11, 104–13 (2017)

    Google Scholar 

  56. Kilbane II, J.J.: Biodesulfurization: how to make it work? Arab. J. Sci. Eng. 42, 1–9 (2017)

    Google Scholar 

  57. Mishra, S.; Akcil, A.; Panda, S.; Tuncuk, A.: Effect of Span-80 and ultrasonication on biodesulphurization of lignite by Rhodococcus erythropolis: lab to semi-pilot scale tests. Miner. Eng. 119, 183–90 (2018)

    Google Scholar 

  58. Porto, B.; Maass, D.; Oliveira, J.V.; de Oliveira, D.; Yamamoto, C.I.; de Souza, A.A.U.; et al.: Heavy gas oil biodesulfurization by Rhodococcus erythropolis ATCC 4277: optimized culture medium composition and evaluation of low-cost alternative media. Chem. Technol. Biotechnol. 92, 2376–2382 (2017)

    Google Scholar 

  59. Singh, P.; Patil, Y.; Rale, V.: Biosurfactant production: emerging trends and promising strategies. J. Appl. Microbiol. (2018). https://doi.org/10.1111/jam.14057

    Google Scholar 

  60. Li, F.; Zhang, Z.; Feng, J.; Cai, X.; Xu, P.: Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. J. Biotechnol. 127, 222–8 (2007)

    Google Scholar 

  61. Chauhan, A.K.; Ahmad, A.; Singh, S.P.; Kumar, A.: Biodesulfurization of benzonaphthothiophene by an isolated Gordonia sp. IITR100. Int. Biodeterior. Biodegrad. 104, 105–111 (2015)

    Google Scholar 

  62. Adlakha, J.; Singh, P.; Ram, S.K.; Kumar, M.; Singh, M.P.; Singh, D.; et al.: Optimization of conditions for deep desulfurization of heavy crude oil and hydrodesulfurized diesel by Gordonia sp. IITR100. Fuel 184, 761–769 (2016)

    Google Scholar 

  63. Bahuguna, A.; Lily, M.K.; Munjal, A.; Singh, R.N.; Dangwal, K.: Desulfurization of dibenzothiophene (DBT) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil. J. Environ. Sci. 23, 975–82 (2011)

    Google Scholar 

  64. Bhatia, S.; Sharma, D.K.: Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3. Biochem. Eng. J. 50, 104–9 (2010)

    Google Scholar 

  65. Abbasian, F.; Lockington, R.; Megharaj, M.; Naidu, R.: Identification of a new operon involved in desulfurization of dibenzothiophenes using a metagenomic study and cloning and functional analysis of the genes. Enzyme Microb. Technol. 87–88, 24–8 (2016)

    Google Scholar 

  66. Peng, B.; Zhou, Z.: Study on growth characteristic and microbial desulfurization activity of the bacterial stain MP12. Biochem. Eng. J. 112, 202–7 (2016)

    Google Scholar 

  67. Sohrabi, M.; Kamyab, H.; Janalizadeh, N.; Huyop, F.Z.: Bacterial desulfurization of organic sulfur compounds exist in fossil fuels. J. Pure Appl. Microbiol. 6, 717–29 (2012)

    Google Scholar 

  68. Martínez, I.; El-Said Mohamed, M.; Santos, V.E.; García, J.L.; García-Ochoa, F.; Díaz, E.: Metabolic and process engineering for biodesulfurization in Gram-negative bacteria. J. Biotechnol. 262, 47–55 (2017)

    Google Scholar 

  69. Martinez, I.; Santos, V.E.; Alcon, A.; Garcia-Ochoa, F.: Enhancement of the biodesulfurization capacity of Pseudomonas putida CECT5279 by co-substrate addition. Process Biochem. 50, 119–24 (2015)

    Google Scholar 

  70. Adlakha, J.; Singh, P.; Ram, S.K.; Kumar,; Singh, M.P.; Singh, D.; et al.: Optimization of conditions for deep desulfurization of heavy crude oil and hydrodesulfurized diesel by Gordonia sp. IITR100. Fuel 184, 761–769 (2016)

    Google Scholar 

  71. Li, F.; Zhang, Z.; Feng, J.; Cai, X.; Xu, P.: Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. J. Biotechnol. 127, 222–8 (2007)

    Google Scholar 

  72. Yu, B.; Xu, P.; Shi, Q.; Ma, C.: Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl. Environ. Microbiol. 72, 54–8 (2006)

    Google Scholar 

  73. Mohebali, G.; Ball, A.S.: Biocatalytic desulfurization (BDS) of petrodiesel fuels. Microbiology 154, 2169–83 (2008)

    Google Scholar 

  74. Bahrami, A.; Shojaosadati, S.A.; Mohebali, G.: Biodegradation of dibenzothiophene by thermophilic bacteria. Biotechnol. Lett. 23, 899–901 (2001)

    Google Scholar 

  75. Konishi, J.I.N.; Ishii, Y.; Onaka, T.; Okumura, K.; Suzuki, M.: Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl. Environ. Microbiol. 63, 3164–9 (1997)

    Google Scholar 

  76. Kirimura, K.; Furuya, T.; Nishii, Y.; Ishii, Y.; Kino, K.; Usami, S.: Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterium Bacillus subtilis WU-S2B. J. Biosci. Bioeng. 91, 262–6 (2001)

    Google Scholar 

  77. Guisan, J.M.: Immobilization of Enzymes and Cells. Methods in Molecular Biology, 3rd edn. Springer, Berlin (2013)

    Google Scholar 

  78. Ghorbannezhad, H.; Moghimi, H.; Taheri, R.A.: Enhanced biodegradation of phenol by magnetically immobilized Trichosporon cutaneum. Ann. Microbiol. 68, 485–91 (2018)

    Google Scholar 

  79. Ranmadugala, D.; Ebrahiminezhad, A.; Manley-Harris, M.; Ghasemi, Y.; Berenjian, A.: Magnetic immobilization of bacteria using iron oxide nanoparticles. Biotechnol. Lett. 40, 237–48 (2018)

    Google Scholar 

  80. Ebrahiminezhad, A.; Varma, V.; Yang, S.; Berenjian, A.: Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Appl. Microbiol. Biotechnol. 100, 173–80 (2016)

    Google Scholar 

  81. Chang, J.H.; Chang, Y.K.; Ryu, H.W.; Chang, H.N.: Desulfurization of light gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2. FEMS Microbiol. Lett. 182, 309–312 (2000)

    Google Scholar 

  82. Naito, M.; Kawamoto, T.; Fujino, K.; Kobayashi, M.; Maruhashi, K.; Tanaka, A.: Long-term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells. Appl. Microbiol. Biotechnol. 55, 374–8 (2001)

    Google Scholar 

  83. Dinamarca, M.A.; Ibacache-Quiroga, C.; Baeza, P.; Galvez, S.; Villarroel, M.; Olivero, P.; et al.: Biodesulfurization of gas oil using inorganic supports biomodified with metabolically active cells immobilized by adsorption. Bioresour. Technol. 101, 2375–8 (2010)

    Google Scholar 

  84. Karimi, A.M.; Sadeghi, S.; Salimi, F.: Biodesulphurization of thiophene as a sulphur model compound in crude oils by Pseudomonas aeruginosa supported on polyethylene. Ecol. Chem. Eng. S 24, 371–9 (2017)

    Google Scholar 

  85. Kareem, S.A.; Aribike, D.S.; Nwachukwu, S.C.; Latinwo, G.K.: Microbial desulfurization of diesel by Desulfobacterium indolicum. J. Environ. Sci. Eng. 54, 98–103 (2012)

    Google Scholar 

  86. Maghsoudi, S.; Vossoughi, M.; Kheirolomoom, A.; Tanaka, E.; Katoh, A.: Biodesulfurization of hydrocarbons and diesel fuels by Rhodococcus sp. strain P32C1. Biochem. Eng. J. 8, 151–156 (2001)

    Google Scholar 

  87. Gallagher, J.R.; Olson, E.S.; Stanley, D.C.: Microbial desulphurisation of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol. Lett. 107, 31–6 (1993)

    Google Scholar 

  88. Gupta, N.; Roychoudhury, P.K.; Deb, J.K.: Biotechnology of desulfurization of diesel: Prospects and challenges. Appl. Microbiol. Biotechnol. 66, 356–66 (2005)

    Google Scholar 

  89. Omori, T.; Monna, L.; Saiki, Y.; Kodama, T.: Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1. Appl. Microbiol. Biotechnol. 58, 911–915 (1992)

    Google Scholar 

  90. Purdy, R.F.; Lepo, J.E.; Ward, B.: Biodesulfurization of organic-sulfur compounds. Curr. Microbiol. 27, 219–22 (1993)

    Google Scholar 

  91. Wang, P.; Krawiec, S.: Desulfurization of dibenzothiophene to 2-hydroxybiphenyl by some newly isolated bacterial strains. Arch. Microbiol. 161, 266–71 (1994)

    Google Scholar 

  92. Chang, J.H.; Rhee, S.K.; Chang, Y.K.; Chang, H.N.: Desulfurization of diesel oils by a newly isolated dibenzothiophene-degrading Nocardia sp. strain CYKS2. Biotechnol. Prog. 14, 851–855 (1998)

    Google Scholar 

  93. Li, F.L.; Xu, P.; Ma, C.Q.; Luo, L.L.; Wang, X.S.: Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiol. Lett. 223, 301–307 (2003)

    Google Scholar 

  94. Li, W.; Tang, H.; Liu, Q.; Xing, J.; Li, Q.; Wang, D.; et al.: Deep desulfurization of diesel by integrating adsorption and microbial method. Biochem. Eng. J. 44, 297–301 (2009)

    Google Scholar 

  95. Tang, Q.; Lin, S.; Cheng, Y.; Liu, S.J.; Xiong, J.R.: Enhanced biodesulfurization of bunker oil by ultrasound pre-treatment with native microbial seeds. Biochem. Eng. J. 77, 58–65 (2013)

    Google Scholar 

  96. Dinamarca, M.A.; Rojas, A.; Baeza, P.; Espinoza, G.; Ibacache-quiroga, C.; Ojeda, J.: Optimizing the biodesulfurization of gas oil by adding surfactants to immobilized cell systems. Fuel 116, 237–41 (2014)

    Google Scholar 

  97. Aribike, D.S.; Susu, A.A.; Nwachukwu, S.C.; Kareem, S.A.: Biodesulfurization of kerosene by Desulfobacterium indolicum. Nature 7, 28–35 (2009)

    Google Scholar 

  98. Gunam, I.B.W.; Yamamura, K.; Sujaya, I.N.; Antara, N.S.; Aryanta, W.R.; Tanaka, M.; et al.: Biodesulfurization of dibenzothiophene and its derivatives using resting and immobilized cells of Sphingomonas subarctica T7b. J. Microbiol. Biotechnol. 23, 473–82 (2013)

    Google Scholar 

  99. Ansari, F.; Grigoriev, P.; Libor, S.; Tothill, I.E.; Ramsden, J.J.: DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe\(_{3}\)O\(_{4}\) nanoparticles. Biocatal. Bioeng. 102, 1505–12 (2009)

    Google Scholar 

  100. Xu, L.; Yang, L.; Luo, M.; Liang, X.; Wei, X.; Zhao, J.; et al.: Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 coated with polyethylenimine-functionalized magnetic nanoparticles under alkaline conditions. J. Hazard. Mater. 189, 787 (2011)

    Google Scholar 

  101. Shan, G.; Xing, J.; Zhang, H.; Liu, H.: Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl. Environ. Microbiol. 71, 4497–502 (2005)

    Google Scholar 

  102. Shan, G.-B.; Xing, J.-M.; Luo, M.-F.; Liu, H.-Z.; Chen, J.-Y.: Immobilization of Pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization. Biotechnol. Lett. 25, 1977–81 (2003)

    Google Scholar 

  103. Li, Y.G.; Gao, H.S.; Li, W.L.; Xing, J.M.; Liu, H.Z.: In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Bioresour. Technol. 100, 5092–6 (2009)

    Google Scholar 

  104. Bardania, H.; Raheb, J.; Mohammad-Beigi, H.; Rasekh, B.; Arpanaei, A.: Desulfurization activity and reusability of magnetite nanoparticle-coated Rhodococcus erythropolis FMF and. R. erythropolis IGTS8 bacterial cells. Biotechnol. Appl. Biochem. 60, 323–329 (2013)

    Google Scholar 

  105. Tran, D.N.; Balkus, K.J.: Perspective of recent progress in immobilization of enzymes. ACS Catal. 1, 956–68 (2011)

    Google Scholar 

  106. Yazbeck, D.R.; Martinez, C.A.; Hu, S.; Tao, J.: Challenges in the development of an efficient enzymatic process in the pharmaceutical industry. Tetrahedron: Asymmetry 15, 2757–2763 (2004)

    Google Scholar 

  107. Alcalde, M.; Ferrer, M.; Plou, F.J.; Ballesteros, A.: Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol. 24, 281–7 (2006)

    Google Scholar 

  108. Knoll, W.; Zizlsperger, M.; Liebermann, T.; Arnold, S.; Badia, A.; Liley, M.; et al.: Streptavidin arrays as supramolecular architectures in surface-plasmon optical sensor formats. Colloids Surf. A: Physicochem. Eng. Asp. 161, 115–37 (2000)

    Google Scholar 

  109. Gahlout, M.; Gupte, S.; Gupte, A.: Biochemical and kinetic study of laccase from Ganoderma cupreum AG-1 in hydrogels. Biotechnol. Appl. Biochem. 173, 215–27 (2014)

    Google Scholar 

  110. Jonkheijm, P.; Weinrich, D.; Schröder, H.; Niemeyer, C.M.; Waldmann, H.: Chemical strategies for generating protein biochips. Angew. Chem. Int. Ed. 47, 9618–47 (2008)

    Google Scholar 

  111. Ohshiro, T.; Kojima, T.; Torii, K.; Kawasoe, H.; Izumi, Y.: Purification and characterization of dibenzothiophene (DBT) sulfone monooxygenase, an enzyme involved in DBT desulfurization, from Rhodococcus erythropolis D-1. J. Biosci. Bioeng. 88, 610–6 (1999)

    Google Scholar 

  112. Davoodi-Dehaghani, F.; Vosoughi, M.; Ziaee, A.A.: Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain. Bioresour. Technol. 101, 1102 (2010)

    Google Scholar 

  113. Yan, H.; Kishimoto, M.; Omasa, T.; Katakura, Y.; Suga, K.I.; Okumura, K.; et al.: Increase in desulfurization activity of Rhodococcus erythropolis KA2-5-1 using ethanol feeding. J. Biosci. Bioeng. 89, 361–6 (2000)

    Google Scholar 

  114. Caro, A.; Boltes, K.; Letón, P.; García-Calvo, E.: Biodesulfurization of dibenzothiophene by growing cells of Pseudomonas putida CECT 5279 in biphasic media. Chemosphere 73, 663–9 (2008)

    Google Scholar 

  115. Calzada, J.; Alcon, A.; Santos, V.E.; Garcia-Ochoa, F.: Extended kinetic model for DBT desulfurization using Pseudomonas putida CECT5279 in resting cells. Biochem. Eng. J. 66, 52–60 (2012)

    Google Scholar 

  116. Caro, A.; Boltes, K.; Letón, P.; García-Calvo, E.: Dibenzothiophene biodesulfurization in resting cell conditions by aerobic bacteria. Biochem. Eng. J. 35, 191–7 (2007)

    Google Scholar 

  117. Holland, H.L.; Brown, F.M.; Kerridge, A.; Pienkos, P.; Arensdor, J.: Biotransformation of sulfides by Rhodocoeccus erythropolis. J. Mol. Catal. B: Enzymatic 22, 219–23 (2003)

    Google Scholar 

  118. Yan, H.; Sun, X.; Xu, Q.; Ma, Z.; Xiao, C.; Jun, N.: Effects of nicotinamide and riboflavin on the biodesulfurization activity of dibenzothiophene by Rhodococcus erythropolis USTB-03. J. Environ. Sci. 20, 613 (2008)

    Google Scholar 

  119. Rashtchi, M.; Mohebali, G.H.; Akbarnejad, M.M.; Towfighi, J.; Rasekh, B.; Keytash, A.: Analysis of biodesulfurization of model oil system by the bacterium, strain RIPI-22. Biochem. Eng. J. 29, 169–73 (2006)

    Google Scholar 

  120. Constantí, M.; Giralt, J.; Bordons, A.: Degradation and desulfurization of dibenzothiophene sulfone and other sulfur compounds by Agrobacterium MC501 and a mixed culture. Enzyme Microb. Technol. 19, 214–9 (1996)

    Google Scholar 

  121. Shavandi, M.; Sadeghizadeh, M.; Zomorodipour, A.; Khajeh, K.: Biodesulfurization of dibenzothiophene by recombinant Gordonia alkanivorans RIPI90A. Bioresour. Technol. 100, 475–9 (2009)

    Google Scholar 

  122. Onaka, T.; Konishi, J.; Ishii, Y.; Maruhashi, K.: Desulfurization characteristics of thermophilic Paenibacillus sp. strain A11-2 against asymmetrically alkylated dibenzothiophenes. J. Biosci. Bioeng. 92, 193–196 (2001)

    Google Scholar 

  123. Lu, J.; Nakajima-Kambe, T.; Shigeno, T.; Ohbo, A.; Nomura, A.; Nakahara, T.: Biodegradation of dibenzothiophene and 4,6-dimethyldibenzothiophene by Sphingomonas paucimobilis strain TZS-7. J. Biosci. Bioeng. 88, 293–9 (1999)

    Google Scholar 

Download references

Funding

This work was supported by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals (KFUPM) in the terms of Startup Research Grant # IN151020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagheer A. Onaizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lateef, S.A., Ajumobi, O.O. & Onaizi, S.A. Enzymatic Desulfurization of Crude Oil and Its Fractions: A Mini Review on the Recent Progresses and Challenges. Arab J Sci Eng 44, 5181–5193 (2019). https://doi.org/10.1007/s13369-019-03800-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03800-2

Keywords

Navigation