Skip to main content

Advertisement

Log in

Study of Ultra-High-Vacuum Properties of Carbon-Coated Stainless Steel Beam Pipes for High-Energy Particle Accelerators

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Ultra-high vacuum (UHV) in high-energy particle accelerator is essential to ensure the required beam lifetime. In the present communication, the UHV characterization of vacuum chambers coated with a thin film of carbon is reported. Recently, such coatings have attracted the interest for their low secondary electron yield and, consequently, their capability to eradicate electron cloud in high-intensity proton beam accelerators. Carbon was coated on stainless steel beam pipes by magnetron sputtering. Coated and uncoated stainless steel pipes (\(\hbox {C}_{\mathrm{ssp}}\) and \(\hbox {UC}_{\mathrm{ssp}}\)) were compared based on their outgassing rates and electron-stimulated desorption yields. The study conclusively verified that magnetron-sputtered carbon coatings are compatible with the requirements of most of the modern particle accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hilleret, N.: Non-thermal outgassing. In: Proceedings CERN Accelerator School—Vacuum in Accelerators, Platja d’Aro, Spain (2006)

  2. Baglin, V.; Bregliozzi, G.; Jimenez, J.M.; Lanza, G.: Vacuum performances and lessons for 2012. In: Proceedings of Chamonix 2012 Workshop on LHC Performance (2012)

  3. Redhead, P.A.; Hobson, J.P.; Kornelsen, E.V.: The Physical Basis of Ultra-High Vacuum. Barnes and Noble, New York (1968)

    Google Scholar 

  4. Jousten, K. (ed.): Thermal outgassing. In: CAS-CERN Accelerator School—Vacuum Technology. Snekersten, Denmark, CERN 1999-05 (1999)

  5. Lafferty, J.M. (ed.): Foundations of Vacuum Science and Technology. Wiley, New York (1998)

    Google Scholar 

  6. Roth, A.: Vacuum Technology, 3rd edn. Elsevier, Amsterdam (1990)

    Google Scholar 

  7. Chao, A.W.; Tigner, M.: Handbook of Accelerator Physics and Engineering. World Scientific, Singapore (1998)

    Google Scholar 

  8. Rumolo, G.; Iadarola, G.: Electron clouds. In: Proceedings of the CAS-CERN Accelerator School—Intensity Limitations in Particle Beams, Switzerland, Geneva (2015)

  9. Ohmi, K.: Beam-photoelectron interactions in positron storage rings. Phys. Rev. Lett. 75(8), 1526–1529 (1995)

    Article  Google Scholar 

  10. Cimino, R.; Demma, T.: Electron cloud in accelerators. Int. J. Mod. Phys. A 29(17), 1430023 (2014)

    Article  Google Scholar 

  11. Baconnier, Y. et al.: A Tau-Charm Factory Laboratory in Spain combined with a synchrotron light source—a conceptual study. CERN/AC 90-07, pp. 219–221 (1990)

  12. Claudet, S.; Lebrun, P.; Serio, L.; Tavian, L.; van Weelderen, R.; Wagner, U.: Cryogenic heat load and refrigeration capacity management at the Large Hadron Collider (LHC). LHC Project Report 1171, pp. 1–6 (2008)

  13. Calatroni, S.; Chiggiato, P.; Pinto, P.C.; Hynds, D.; Taborelli, M.; Vallgren, C.Y.: Amorphous-carbon thin films for the mitigation of electron clouds in particle accelerators. Final CARE-HHH Workshop on Scenarios for the LHC Upgrade and FAIR, Chavannes-de-Bogis, Switzerland, pp. 128–132 (2008)

  14. Vallgren, C.Y.; Ashraf, A.; Calatroni, S.; Chiggiato, P.; Pinto, P.C.; Marques, H.P.; Neupert, H.; Taborelli, M.; Vollenberg, W.; Wevers, I.; Yaqub, K.: Low secondary electron yield carbon coatings for electron cloud mitigation in modern particle accelerators. In: Proceedings of IPAC’ 10, Kyoto, Japan, WEOAMH03 (2010)

  15. Li, M.; Dylla, H.F.: Model for the outgassing of water from metal surfaces. J. Vac. Sci. Technol. A 11, 1702–1707 (1993)

    Article  Google Scholar 

  16. Li, M.; Dylla, H.F.: Model for the outgassing of water from metal surfaces. II. J. Vac. Sci. Technol. A 12, 1772–1777 (1994)

    Article  Google Scholar 

  17. Li, M.; Dylla, H.F.: Model for the outgassing of water from metal surfaces (III). J. Vac. Sci. Technol. A 12, 1872–1878 (1995)

    Article  Google Scholar 

  18. Avdiaj, S.; Erjavec, B.: Outgassing of hydrogen from a stainless steel vacuum chamber. Mater. Technol. 46(2), 161–167 (2012)

    Google Scholar 

  19. Benvenuti, C.; Chiggiato, P.; Cicoira, F.; L’Aminot, Y.: Nonevaporable getter films for ultrahigh vacuum applications. J. Vac. Technol. A 16(1), 148–154 (1998)

    Article  Google Scholar 

  20. Edwards, D.: Upper bound to the pressure in an elementary vacuum system. J. Vac. Sci. Technol. 14(1), 606–610 (1977)

    Article  Google Scholar 

  21. Edwards, D.: An upper bound to the outgassing rate of metal surfaces. J. Vac. Sci. Technol. 14(4), 1030–1032 (1977)

    Article  Google Scholar 

  22. Dai, W.; Kim, S.J.; Seong, W.K.; Kim, S.H.; Lee, K.R.; Kim, H.Y.; Moon, M.W.: Porous carbon nanoparticle networks with tunable absorbability. Sci. Rep. 3, 2524 (2013)

    Article  Google Scholar 

  23. Kato, S.; Oyama, H.; Odagiri, H.: Surface modification of vacuum wall by carbon and its outgassing. Vacuum 41(7–9), 1998–2000 (1990)

    Article  Google Scholar 

  24. Hwang, J.; Ihm, J.; Lee, K.R.; Kim, S.: Computational evaluation of amorphous carbon coating for durable silicon anodes for lithium-ion batteries. Nanomaterials 5, 1654–1666 (2015)

    Article  Google Scholar 

  25. Rossi, F.; André, B.; van Veen, A.; Mijnarends, P.E.; Schut, H.; Delplancke, M.P.; Gissler, W.; Haupt, J.; Lucazeau, G.; Abello, L.: Effect of ion beam assistance on the microstructure of nonhydrogenated amorphous carbon. J. Appl. Phys. 75(6), 3121–3129 (1994)

    Article  Google Scholar 

  26. Grinham, R.; Chew, D.A.: A review of outgassing and methods for its reduction. Appl. Sci. Converg. Technol. 26(5), 95–109 (2017)

    Article  Google Scholar 

  27. Wyon, C.; Gillet, R.; Lombard, L.: Properties of amorphous carbon films produced by magnetron sputtering. Thin Solid Films 122, 203–216 (1984)

    Article  Google Scholar 

  28. Madey, T.E.; Yates Jr., J.T.: Electron-stimulated desorption as a tool for studies of chemisorption: a review. J. Vac. Sci. Technol. 8(4), 525–555 (1971)

    Article  Google Scholar 

  29. Malyshev, O.B.; Jones, R.M.A.; Hogan, B.T.; Hannah, A.: Electron stimulated desorption from the 316L stainless steel as a function of impact electron energy. J. Vac. Sci. Technol. A 31, 031601 (2013)

    Article  Google Scholar 

  30. Ady, M.; Chiggiato, P.; Kersevan, R.; Tanimoto, Y.; Honda, T.: Photodesorption and electron yield measurements of thin film coatings for future accelerators. In: Proceedings of IPAC, Richmond, VA, USA, WEPHA011, p. 3123 (2015)

Download references

Acknowledgements

The authors acknowledge Pedro Costa Pinto from VSC, CERN (Switzerland), for providing coated samples, and Ivo Wevers from CERN for providing all the technical facility for characterization. The authors would like to express their special thanks to Paolo Chiggiato for supervising the work under his technical guidance. Funding was provided by Pakistan Atomic Energy Commission and Higher Education Commision, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshan Ashraf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, A., Mehmood, M. & Janjua, S.A. Study of Ultra-High-Vacuum Properties of Carbon-Coated Stainless Steel Beam Pipes for High-Energy Particle Accelerators. Arab J Sci Eng 44, 6593–6600 (2019). https://doi.org/10.1007/s13369-019-03761-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03761-6

Keywords

Navigation