Skip to main content
Log in

Electrochemical Corrosion Performance of Aromatic Functionalized Imidazole Inhibitor Under Hydrodynamic Conditions on API X65 Carbon Steel in 1 M HCl Solution

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The hydrodynamic corrosion inhibitive performance of two imidazole derivatives 2-ethyl-4-methylimidazole and 1-benzylimidazole was investigated on API X65 steel in 1.0 M HCl solution. Structural features of the molecules derived from density functional theory (DFT) calculations at B3LYP/6-31G(d.p) showed that 1-benzylimidazole possess high electron density due to \(\pi \) network which lies flat on the surface and tends to form a stronger interaction with the metal. The addition of the inhibitor molecules in 1 M HCl solution shifted the corrosion potential \(({E}_{\mathrm{corr}})\) in the noble direction. Tafel polarization and electrochemical impedance spectroscopy (EIS) experiments performed at 0–1500 rpm and 50–500 ppm of inhibitor concentration revealed that the corrosion rate was increased with an increase in rotation speed in the absence of inhibitor molecules. However, upon the addition of the inhibitor molecules in the solution minimized the corrosion rate with an efficiency of 82% in the case of 1-benzylimidazole at 500 ppm and 500 rpm electrode rotation. It was concluded that simple imidazole molecules could serve as corrosion inhibitors under extreme hydrodynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cruz, J.; Martınez, R.; Genesca, J.; Garcıa-Ochoa, E.: Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media. J. Electroanal. Chem. 566(1), 111–121 (2004)

    Article  Google Scholar 

  2. Rauscher, A.; Kutsan, G.; Lukacs, Z.: Studies on the mechanisms of corrosion inhibition by acetylenic compounds in hydrochloric acid solution. Corros. Sci. 35(5–8), 1425–1430 (1993)

    Article  Google Scholar 

  3. Wang, D.; Li, S.; Ying, Y.; Wang, M.; Xiao, H.; Chen, Z.: Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives. Corro. Sci. 41(10), 1911–1919 (1999)

    Article  Google Scholar 

  4. Xia, S.; Qiu, M.; Yu, L.; Liu, F.; Zhao, H.: Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance. Corro. Sci. 50(7), 2021–2029 (2008). https://doi.org/10.1016/j.corsci.2008.04.021

    Article  Google Scholar 

  5. Bommersbach, P.; Alemany-Dumont, C.; Millet, J.-P.; Normand, B.: Hydrodynamic effect on the behaviour of a corrosion inhibitor film: characterization by electrochemical impedance spectroscopy. Electrochim. Acta 51(19), 4011–4018 (2006)

    Article  Google Scholar 

  6. Bommersbach, P.; Alemany-Dumont, C.; Millet, J.-P.; Normand, B.: Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods. Electrochim. Acta 51(6), 1076–1084 (2005)

    Article  Google Scholar 

  7. Braga, D.U.; Diniz, A.E.; Miranda, G.W.; Coppini, N.L.: Using a minimum quantity of lubricant (MQL) and a diamond coated tool in the drilling of aluminum-silicon alloys. J. Mater. Process. Technol. 122(1), 127–138 (2002)

    Article  Google Scholar 

  8. Mansfeld, F.; Kendig, M.; Lorenz, W.: Corrosion inhibition in neutral, aerated media. J. Electrochem. Soc. 132(2), 290–296 (1985)

    Article  Google Scholar 

  9. Bahrami, M.; Hosseini, S.; Pilvar, P.: Experimental and theoretical investigation of organic compounds as inhibitors for mild steel corrosion in sulfuric acid medium. Corros. Sci. 52(9), 2793–2803 (2010)

    Article  Google Scholar 

  10. Zhang, Q.; Hua, Y.: Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid. Electrochim. Acta 54(6), 1881–1887 (2009)

    Article  Google Scholar 

  11. Zhang, F.; Tang, Y.; Cao, Z.; Jing, W.; Wu, Z.; Chen, Y.: Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl)-benzimidazole for mild steel in hydrochloric acid. Corros. Sci. 61, 1–9 (2012)

    Article  Google Scholar 

  12. Obot, I.; Umoren, S.; Gasem, Z.; Suleiman, R.; El Ali, B.: Theoretical prediction and electrochemical evaluation of vinylimidazole and allylimidazole as corrosion inhibitors for mild steel in 1 M HCl. J. Ind. Eng. Chem. 21, 1328–1339 (2015)

    Article  Google Scholar 

  13. Morales-Gil, P.; Walczak, M.; Cottis, R.; Romero, J.; Lindsay, R.: Corrosion inhibitor binding in an acidic medium: interaction of 2-mercaptobenizmidazole with carbon-steel in hydrochloric acid. Corros. Sci. 85, 109–114 (2014)

    Article  Google Scholar 

  14. Khaled, K.; Amin, M.A.: Electrochemical and molecular dynamics simulation studies on the corrosion inhibition of aluminum in molar hydrochloric acid using some imidazole derivatives. J. Appl. Electrochem. 39(12), 2553–2568 (2009)

    Article  Google Scholar 

  15. Şahin, M.; Bilgic, S.; Yılmaz, H.: The inhibition effects of some cyclic nitrogen compounds on the corrosion of the steel in NaCl mediums. Appl. Surf. Sci. 195(1), 1–7 (2002)

    Article  Google Scholar 

  16. Gece, G.; Bilgiç, S.: Quantum chemical study of some cyclic nitrogen compounds as corrosion inhibitors of steel in NaCl media. Corros. Sci. 51(8), 1876–1878 (2009)

    Article  Google Scholar 

  17. Cruz, J.; Garcia-Ochoa, E.; Castro, M.: Experimental and theoretical study of the 3-amino-1,2,4-triazole and 2-aminothiazole corrosion inhibitors in carbon steel. J. Electrochem. Soc. 150(1), B26–B35 (2003)

    Article  Google Scholar 

  18. Cruz, J.; Pandiyan, T.; Garcia-Ochoa, E.: A new inhibitor for mild carbon steel: electrochemical and DFT studies. J. Electroanal. Chem. 583(1), 8–16 (2005)

    Article  Google Scholar 

  19. Nikolic, J.; Expósito, E.; Iniesta, J.; González-García, J.; Montiel, V.: Theoretical concepts and applications of a rotating disk electrode. J. Chem. Educ. 77(9), 1191 (2000)

    Article  Google Scholar 

  20. Liu, G.; Tree, D.; High, M.: Relationships between rotating disk corrosion measurements and corrosion in pipe flow. Corrosion 50(8), 584–593 (1994)

    Article  Google Scholar 

  21. Taylor, K.; Nasr-El-Din, H.: Measurement of acid reaction rates with the rotating disk apparatus. J. Can. Pet. Technol. 48(06), 66–70 (2009)

    Article  Google Scholar 

  22. Becerra, H.Q.; Retamoso, C.; Macdonald, D.D.: The corrosion of carbon steel in oil-in-water emulsions under controlled hydrodynamic conditions. Corros. Sci. 42(3), 561–575 (2000)

    Article  Google Scholar 

  23. Dinan, T.; Matlosz, M.; Landolt, D.: Experimental investigation of the current distribution on a recessed rotating disk electrode. J. Electrochem. Soc. 138(10), 2947–2951 (1991)

    Article  Google Scholar 

  24. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.: Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT (2009)

    Google Scholar 

  25. Sulaiman, K.O.; Onawole, A.T.: Quantum chemical evaluation of the corrosion inhibition of novel aromatic hydrazide derivatives on mild steel in hydrochloric acid. Comput. Theor. Chem. 1093, 73–80 (2016). https://doi.org/10.1016/j.comptc.2016.08.014

    Article  Google Scholar 

  26. Khaled, K.F.: Studies of iron corrosion inhibition using chemical, electrochemical and computer simulation techniques. Electrochim. Acta 55(22), 6523–6532 (2010). https://doi.org/10.1016/j.electacta.2010.06.027

    Article  Google Scholar 

  27. Obot, I.B.; Obi-Egbedi, N.O.: Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors. Corros. Sci. 52(2), 657–660 (2010). https://doi.org/10.1016/j.corsci.2009.10.017

    Article  Google Scholar 

  28. Mendonça, G.L.F.; Costa, S.N.; Freire, V.N.; Casciano, P.N.S.; Correia, A.N.; Lima-Neto, Pd: Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods. Corros. Sci. 115, 41–55 (2017). https://doi.org/10.1016/j.corsci.2016.11.012

    Article  Google Scholar 

  29. Feng, L.; Yang, H.; Wang, F.: Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5% NaCl saturated \({\rm {Ca(OH)}}_2\) solution. Electrochim. Acta 58, 427–436 (2011). https://doi.org/10.1016/j.electacta.2011.09.063

    Article  Google Scholar 

  30. Yadav, M.; Kumar, S.; Purkait, T.; Olasunkanmi, L.O.; Bahadur, I.; Ebenso, E.E.: Electrochemical, thermodynamic and quantum chemical studies of synthesized benzimidazole derivatives as corrosion inhibitors for N80 steel in hydrochloric acid. J. Mol. Liq. 213, 122–138 (2016). https://doi.org/10.1016/j.molliq.2015.11.018

    Article  Google Scholar 

  31. Kumar, S.; Vashisht, H.; Olasunkanmi, L.O.; Bahadur, I.; Verma, H.; Singh, G.; Obot, I.B.; Ebenso, E.E.: Experimental and theoretical studies on inhibition of mild steel corrosion by some synthesized polyurethane tri-block co-polymers. Sci. Rep. 6, 30937 (2016). https://doi.org/10.1038/srep30937

    Article  Google Scholar 

  32. Chattaraj, P.K.; Lee, H.; Parr, R.G.: HSAB principle. J. Am. Chem. Soc. 113(5), 1855–1856 (1991). https://doi.org/10.1021/ja00005a073

    Article  Google Scholar 

  33. Choudhary, S.; Garg, A.; Mondal, K.: Relation between open circuit potential and polarization resistance with rust and corrosion monitoring of mild steel. J. Mat. Eng. Perform. 25(7), 2969–2976 (2016). https://doi.org/10.1007/s11665-016-2112-6

    Article  Google Scholar 

  34. Saker, S.; Aliouane, N.; Hammache, H.; Chafaa, S.; Bouet, G.: Tetraphosphonic acid as eco-friendly corrosion inhibitor on carbon steel in 3 % NaCl aqueous solution. Ionics 21(7), 2079–2090 (2015). https://doi.org/10.1007/s11581-015-1377-3

    Article  Google Scholar 

  35. Felhösi, I.; Telegdi, J.; Pálinkás, G.; Kálmán, E.: Kinetics of self-assembled layer formation on iron. Electrochim. Acta 47(13), 2335–2340 (2002). https://doi.org/10.1016/S0013-4686(02)00084-1

    Article  Google Scholar 

  36. Yıldırım, A.; Çetin, M.: Synthesis and evaluation of new long alkyl side chain acetamide, isoxazolidine and isoxazoline derivatives as corrosion inhibitors. Corros. Sci. 50(1), 155–165 (2008). https://doi.org/10.1016/j.corsci.2007.06.015

    Article  Google Scholar 

  37. Zeino, A.; Abdulazeez, I.; Khaled, M.; Jawich, M.W.; Obot, I.B.: Mechanistic study of polyaspartic acid (PASP) as eco-friendly corrosion inhibitor on mild steel in 3% NaCl aerated solution. J. Mol. Liq. 250, 50–62 (2018). https://doi.org/10.1016/j.molliq.2017.11.160

    Article  Google Scholar 

  38. Ashassi-Sorkhabi, H.; Asghari, E.: Effect of hydrodynamic conditions on the inhibition performance of l-methionine as a “green” inhibitor. Electrochim. Acta 54(2), 162–167 (2008). https://doi.org/10.1016/j.electacta.2008.08.024

    Article  Google Scholar 

  39. Jiang, X.; Zheng, Y.G.; Ke, W.: Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for \({\rm {CO}}_2\) corrosion of N80 steel in 3% NaCl solution. Corros. Sci. 47(11), 2636–2658 (2005). https://doi.org/10.1016/j.corsci.2004.11.012

    Article  Google Scholar 

  40. McCafferty, E.: Validation of corrosion rates measured by the Tafel extrapolation method. Corros. Sci. 47(12), 3202–3215 (2005). https://doi.org/10.1016/j.corsci.2005.05.046

    Article  Google Scholar 

  41. Shi, Z.; Liu, M.; Atrens, A.: Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 52(2), 579–588 (2010). https://doi.org/10.1016/j.corsci.2009.10.016

    Article  Google Scholar 

  42. Marco, I.; Van der Biest, O.: Polarization measurements from a rotating disc electrode for characterization of magnesium corrosion. Corros. Sci. 102, 384–393 (2016). https://doi.org/10.1016/j.corsci.2015.10.031

    Article  Google Scholar 

  43. Garcia, L.A.C.J.; Joia, C.J.B.M.; Cardoso, E.M.; Mattos, O.R.: Electrochemical methods in corrosion on petroleum industry: laboratory and field results. Electrochim. Acta 46(24–25), 3879–3886 (2001). https://doi.org/10.1016/S0013-4686(01)00675-2

    Article  Google Scholar 

  44. Wang, Z.; Li, J.; Wang, Y.; Wang, Z.: An EIS analysis on corrosion resistance of anti-abrasion coating. Surf. Interfaces 6, 33–39 (2017). https://doi.org/10.1016/j.surfin.2016.11.003

    Article  Google Scholar 

  45. Ribeiro, D.V.; Abrantes, J.C.C.: Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach. Constr. Build. Mater. 111, 98–104 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.047

    Article  Google Scholar 

  46. Gutiérrez, E.; Rodríguez, J.A.; Cruz-Borbolla, J.; Alvarado-Rodríguez, J.G.; Thangarasu, P.: Development of a predictive model for corrosion inhibition of carbon steel by imidazole and benzimidazole derivatives. Corros. Sci. 108, 23–35 (2016). https://doi.org/10.1016/j.corsci.2016.02.036

    Article  Google Scholar 

  47. Aljourani, J.; Raeissi, K.; Golozar, M.A.: Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 M HCl solution. Corros. Sci. 51(8), 1836–1843 (2009). https://doi.org/10.1016/j.corsci.2009.05.011

    Article  Google Scholar 

  48. Solmaz, R.; Kardaş, G.; Çulha, M.; Yazıcı, B.; Erbil, M.: Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochim. Acta 53(20), 5941–5952 (2008). https://doi.org/10.1016/j.electacta.2008.03.055

    Article  Google Scholar 

  49. Coelho, L.B.; Cossement, D.; Olivier, M.G.: Benzotriazole and cerium chloride as corrosion inhibitors for AA2024-T3: an EIS investigation supported by SVET and ToF-SIMS analysis. Corros. Sci. 130, 177–189 (2018). https://doi.org/10.1016/j.corsci.2017.11.004

    Article  Google Scholar 

  50. Odewunmi, N.A.; Umoren, S.A.; Gasem, Z.M.: Utilization of watermelon rind extract as a green corrosion inhibitor for mild steel in acidic media. J. Ind. Eng. Chem. 21, 239–247 (2015). https://doi.org/10.1016/j.jiec.2014.02.030

    Article  Google Scholar 

  51. Khaled, K.F.; Al-Qahtani, M.M.: The inhibitive effect of some tetrazole derivatives towards Al corrosion in acid solution: chemical, electrochemical and theoretical studies. Mater. Chem. Phys. 113(1), 150–158 (2009). https://doi.org/10.1016/j.matchemphys.2008.07.060

    Article  Google Scholar 

  52. Daoud, D.; Douadi, T.; Hamani, H.; Chafaa, S.; Al-Noaimi, M.: Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: Experimental and computational study. Corros. Sci. 94, 21–37 (2015). https://doi.org/10.1016/j.corsci.2015.01.025

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by King Fahd University of Petroleum and Minerals (KFUPM) in conducting this research through projects #NUS15107 and #IN171015, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. H. Toor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, A., Irshad, H.M., Zeino, A. et al. Electrochemical Corrosion Performance of Aromatic Functionalized Imidazole Inhibitor Under Hydrodynamic Conditions on API X65 Carbon Steel in 1 M HCl Solution. Arab J Sci Eng 44, 5877–5888 (2019). https://doi.org/10.1007/s13369-019-03745-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03745-6

Keywords

Navigation