Skip to main content
Log in

Effect of Ultra-low Vegetable Oil Droplets on Microporous Media Burner Under Surface and Submerged Flames

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study presents experimental and numerical works on porous media burner. The influence of ultra-low vegetable oil droplets on burner performance was investigated. A unique dual-layer microporous media burner was fabricated to generate surface and submerged flames under lean conditions. Optimum equivalence ratio under lean conditions for surface and submerged flames was recorded at 0.7 and 0.5, respectively. The performance of the burner was examined by adding vegetable oil droplets of 20, 40, 60, or 80 \(\upmu \hbox {L}\) externally on the surface of reaction layer. At 80 \(\upmu \hbox {L}\), the burner was at its best performance, while \(>80 ~\upmu \hbox {L}\) leads to unstable flames. The maximum thermal efficiency of the burner under surface flame without droplets was found out to be 90%, which was enhanced to 94% by enabling 80 \(\upmu \hbox {L}\) of vegetable oil. Similarly, with submerged flame maximum thermal efficiency progressively improved from 38 to 45%. The impact of vegetable oil at the microscopic level was determined by performing scanning electron microscopy and X-ray diffraction analysis. Digital thermal images were captured at critical ER to ensure a stable combustion. The emitted combustion gases were monitored continuously to detect the emissions (NOx and CO). These emissions were within controlled limits. Finally, three-dimensional numerical study was performed to effectively comprehend the experimental data for both temperature and emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PMB:

Porous media burner

PMC:

Porous media combustion

PM:

Porous media

VO:

Vegetable oil

SEM:

Scanning electron microscopy

XRD:

X-ray diffraction

ER:

Equivalence ratio

ZVO:

Zero vegetable oil

Pe :

Peclet number

F :

Flame speed (m/s)

\(D_\mathrm{p} \) :

Diameter of porous media (m)

\(\rho \) :

Density of fuel (\(\hbox {kg/m}^{3}\))

\(C_\mathrm{P} \) :

Specific heat of fuel (kJ/kg K)

k :

Thermal conductivity of fuel (W/m K)

\({\hbox {AF}}_\mathrm{S} \) :

Stoichiometric air–fuel ratio

\({\hbox {AF}}_\mathrm{a} \) :

Actual air–fuel ratio

\(M_\mathrm{f} \) :

Mass flow rate (kg/s)

\(V_\mathrm{f} \) :

Volume flow rate (\(\hbox {m}^{3}/\hbox {s}\))

\(Q_\mathrm{in} \) :

Energy supplied from fuel (kW)

\(Q_\mathrm{out} \) :

Energy generated from combustion (kW)

\(C_\mathrm{v} \) :

Calorific value of fuel (kJ/kg)

\(M_\mathrm{w} \) :

Mass of water (kg)

\(M_\mathrm{c} \) :

Mass of container (kg)

\(C_\mathrm{w} \) :

Specific heat of water (kJ/kg K)

\(C_\mathrm{c} \) :

Specific heat of container (kJ/kg K)

\(n_\mathrm{th} \) :

Thermal efficiency (%)

\(T_\mathrm{i} \) :

Initial temperature (K)

\(T_\mathrm{f} \) :

Final temperature (K)

t :

Time (s)

\(M_\mathrm{V} \) :

Mean value

SD:

Standard deviation

n :

Number of trials

\(X_i \) :

Actual value, \({I} = 1,2,3{\ldots } {n}\)

References

  1. Mujeebu, M.A.; Abdullah, M.Z.; Abu Bakar, M.Z.; Mohamad, A.A.; Abdullah, M.K.: A review of investigations on liquid fuel combustion in porous inert media. Prog. Energy Combust. Sci. 35(2), 216–230 (2009)

    Article  Google Scholar 

  2. Mujeebu, M.A.; Abdullah, M.Z.; Abu Bakar, M.Z.; Mohamad, A.A.; Abdullah, M.K.: Applications of porous media combustion technology—a review. Appl. Energy 86(9), 1365–1375 (2009)

    Article  Google Scholar 

  3. Mujeebu, M.A.; Abdullah, M.Z.; Bakar, M.Z.; Mohamad, A.A.; Muhad, R.M.; Abdullah, M.K.: Combustion in porous media and its applications—a comprehensive survey. J. Environ. Manag. 90(8), 2287–312 (2009)

    Article  Google Scholar 

  4. Mital, R.; Gore, J.P.; Viskanta, R.: A study of the structure of submerged reaction zone in porous ceramic radiant burners. Combust. Flame 111(3), 175–184 (1997)

    Article  Google Scholar 

  5. Yilmaz, I.; Ratner, A.; Ilbas, M.; Huang, Y.: Experimental investigation of thermoacoustic coupling using blended hydrogen–methane fuels in a low swirl burner. Int. J. Hydrog. Energy 35(1), 329–336 (2010)

    Article  Google Scholar 

  6. Yu, B.; Kum, S.M.; Lee, C.E.; Lee, S.: Combustion characteristics and thermal efficiency for premixed porous-media types of burners. Energy 53, 343–350 (2013)

    Article  Google Scholar 

  7. Mujeebu, M.A.; Abdullah, M.Z.; Mohamad, A.A.: Development of energy efficient porous medium burners on surface and submerged combustion modes. Energy 36(8), 5132–5139 (2011)

    Article  Google Scholar 

  8. Lapirattanakun, A.; Charoensuk, J.: Developement of porous media burner operating on waste vegetable oil. Appl. Therm. Eng. 110, 190–201 (2017)

    Article  Google Scholar 

  9. Natarajan, R.; Karthikeyan, N.S.; Agarwaal, A.; Sathiyanarayanan, K.: Use of vegetable oil as fuel to improve the efficiency of cooking stove. Renew. Energy 33(11), 2423–2427 (2008)

    Article  Google Scholar 

  10. Bazooyar, B.; Ghorbani, A.; Shariati, A.: Combustion performance and emissions of petrodiesel and biodiesels based on various vegetable oils in a semi industrial boiler. Fuel 90(10), 3078–3092 (2011)

    Article  Google Scholar 

  11. Mustafa, K.F.; Abdullah, S.; Abdullah, M.Z.; Sopian, K.: Experimental analysis of a porous burner operating on kerosene–vegetable cooking oil blends for thermophotovoltaic power generation. Energy Convers. Manag. 96, 544–560 (2015)

    Article  Google Scholar 

  12. Mustafa, K.F.; Abdullah, S.; Abdullah, M.Z.; Sopian, K.; Ismail, A.K.: Experimental investigation of the performance of a liquid fuel-fired porous burner operating on kerosene–vegetable cooking oil (VCO) blends for micro-cogeneration of thermoelectric power. Renew. Energy 74, 505–516 (2015)

    Article  Google Scholar 

  13. Mujeebu, M.A.; Abdullah, M.Z.; Mohamad, A.A.; Abu Bakar, M.Z.: Trends in modeling of porous media combustion. Prog. Energy Combust. Sci. 36(6), 627–650 (2010)

    Article  Google Scholar 

  14. Kahraman, N.; Tangöz, S.; Akansu, S.O.: Numerical analysis of a gas turbine combustor fueled by hydrogen in comparison with jet-A fuel. Fuel 217, 66–77 (2018)

    Article  Google Scholar 

  15. Dai, H.M.; Zhao, Q.; Lin, B.Q.; He, S.; Chen, X.F.; Zhang, Y.; Niu, Y.; Yin, S.H.: Premixed combustion of low-concentration coal mine methane with water vapor addition in a two-section porous media burner. Fuel 213, 72–82 (2018)

    Article  Google Scholar 

  16. Wang, Y.; Zeng, H.; Shi, Y.; Cai, N.: Methane partial oxidation in a two-layer porous media burner with \({\text{ Al }}_{2}{\text{ O }}_{3}\) pellets of different diameters. Fuel 217, 45–50 (2018)

    Article  Google Scholar 

  17. Mishra, N.K.; Muthukumar, P.: Development and testing of energy efficient and environment friendly porous radiant burner operating on liquefied petroleum gas. Appl. Therm. Eng. 129, 482–489 (2018)

    Article  Google Scholar 

  18. Zuo, W.; E, J.; Hu, W.; Jin, Y.; Han, D.: Numerical investigations on combustion characteristics of H 2/air premixed combustion in a micro elliptical tube combustor. Energy 126, 1–12 (2017)

  19. Song, F.Q.; Wen, Z.; Dong, Z.Y.; Wang, E.Y.; Liu, X.L.: Ultra-low calorific gas combustion in a gradually-varied porous burner with annular heat recirculation. Energy 119, 497–503 (2017)

    Article  Google Scholar 

  20. Valera-Medina, A.; Marsh, R.; Runyon, J.; Pugh, D.; Beasley, P.; Hughes, T.; Bowen, P.: Ammonia-methane combustion in tangential swirl burners for gas turbine power generation. Appl. Energy 185, 1362–1371 (2017)

    Article  Google Scholar 

  21. Vandadi, V.; Wu, H.; Kwon, O.C.; Kaviany, M.; Park, C.: Multiscale thermal nonequilibria for record superadiabatic-radiant-burner efficiency: experiment and analyses. Int. J. Heat Mass Transf. 106, 731–740 (2017)

    Article  Google Scholar 

  22. Rashwan, S.S.; Ibrahim, A.H.; Abou-Arab, T.W.; Nemitallah, M.A.; Habib, M.A.: Experimental investigation of partially premixed methane–air and methane–oxygen flames stabilized over a perforated-plate burner. Appl. Energy 169, 126–137 (2016)

    Article  Google Scholar 

  23. Ismail, A.K.; Abdullah, M.Z.; Zubair, M.; Jamaludin, A.R.; Ahmad, Z.A.: Effect of ceramic coating in combustion and cogeneration performance of \({\text{ Al }}_{2}{\text{ O }}_{3}\) porous medium. J. Energy Inst. 89(1), 81–93 (2016)

    Article  Google Scholar 

  24. Caetano, N.R.; Figueira da Silva, L.F.: A comparative experimental study of turbulent non premixed flames stabilized by a bluff-body burner. Exp. Therm. Fluid Sci. 63, 20–33 (2015)

    Article  Google Scholar 

  25. Tierney, C.; Harris, A.: Materials design and selection issues in ultra-lean porous burners. J. Aust. Ceram. Soc. 45(2), 20–29 (2009)

    Google Scholar 

  26. Ismail, A.K.; Abdullah, M.Z.; Zubair, M.; Ahmad, Z.A.; Jamaludin, A.R.; Mustafa, K.F.; Abdullah, M.N.: Application of porous medium burner with micro cogeneration system. Energy 50, 131–142 (2013)

    Article  Google Scholar 

  27. Janvekar, A.A.; Miskam, M.A.; Abas, A.; Ahmad, Z.A.; Juntakan, T.; Abdullah, M.Z.: Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner. Energy 122, 103–110 (2017)

    Article  Google Scholar 

  28. Trimis, D.; Durst, F.: Combustion in a porous medium-advances and applications. Combust. Sci. Technol. 121(1–6), 153–168 (1996)

    Article  Google Scholar 

  29. Wood, S.; Harris, A.T.: Porous burners for lean-burn applications. Prog. Energy Combus. Sci. 34(5), 667–684 (2008)

    Article  Google Scholar 

  30. Shafiey Dehaj, M.; Ebrahimi, R.; Shams, M.; Farzaneh, M.: Experimental analysis of natural gas combustion in a porous burner. Exp. Therm. Fluid Sci. 84, 134–143 (2017)

    Article  Google Scholar 

  31. Mustafa, K.F.; Abdullah, S.; Abdullah, M.Z.; Sopian, K.: Comparative assessment of a porous burner using vegetable cooking oil–kerosene fuel blends for thermoelectric and thermophotovoltaic power generation. Fuel 180, 137–147 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Sains Malaysia for the financial support provided by USM Fellowship. This research work was funded by USM RU Grant 1001/PAERO/8014089 and USM Bridging Grant 304/PAERO/6316105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayub Ahmed Janvekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janvekar, A.A., Abas, A., Ahmad, Z.A. et al. Effect of Ultra-low Vegetable Oil Droplets on Microporous Media Burner Under Surface and Submerged Flames. Arab J Sci Eng 44, 5921–5935 (2019). https://doi.org/10.1007/s13369-019-03737-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03737-6

Keywords

Navigation