Skip to main content
Log in

Heat Transfer Enhancement in Transformers by Optimizing Fin Designs and Using Nanofluids

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we have simulated different fin geometries at different flow intensities to study the optimum design for better flow and heat transfer characteristics to be used in transformers’ cooling. We use energy density of oil (pressure) as flow intensity parameter being a compressible fluid which is dependent on temperature variation. We observe direct proportionality of shear stresses (pressure drop) with flow intensity. Pressure drop is dominant in rectangular fins with higher height-to-width ratio (h/w), and it decreases sharply for lower h / w ratio especially at bends, whereas it is significantly better in conic-shaped fins especially at \(a\ge \) 1.2. We observe an inverse proportionality of temperature drop with the flow intensity due to transient heat transfer phenomenon. We observe smooth temperature drop for conic-shaped fins. We have also investigated oil-based alumina nanofluids (in different wt/V ratios) as coolant for heat transfer enhancement in transformers. It is observed experimentally that dielectric strength improves with oil-based nanofluids. We obtain about 8.67% better results by adding 0.08% particles in oil. Comparative analysis with previous works shows that alumina-based nanofluids have better results than others. Still, there is a lot of work to be done in their use at commercial level due to their short durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

h/w :

Height-to-width ratio

wt/V:

Weight per volume

CFD:

Computational fluid dynamics

PEL:

Pak Electron Limited

SIMPLE:

Semi-implicit method for pressure-linked equations

SEM:

Scanning electron microscopy

\(\rho \) :

Density (kg/\(\text {m}^{3})\)

\({\varvec{\nabla }}\) :

Divergence (1/m)

\(\nabla T\) :

Gradient of temperature (\(^{\circ }\)C/m)

\(A_n \) :

Cross-sectional area in n-direction (\(\text {m}^{2})\)

\(A_\mathrm{r} \) :

Cross-sectional area along radius (\(\text {m}^{2})\)

\(A_\mathrm{s} \) :

Surface area (\(\text {m}^{2})\)

\(a, b, r, \dot{h}, k\) :

Conic section components

h :

Convective heat transfer coefficient (W/\(\text {m}^{2}\)\(^{\circ }\)C)

k :

Thermal conductivity (W/m \(^{\circ }\)C)

\(Q_n \) :

Heat transfer rate in n-direction (W)

\(Q_\mathrm{r} \) :

Heat transfer rate along radius (W)

\(S_\mathrm{T} \) :

Source term

T :

Temperature (\(^{\circ }\)C or K)

\(\mu _\mathrm{f} \) :

Dynamics viscosity (Pa s)

\(c_\mathrm{Pf} \) :

Fluid specific heat (J/ \(^{\circ }\)C or J/K)

References

  1. Dasgupta, I.: Design of Transformers. Tata McGraw-Hill Education, New York (2002)

    Google Scholar 

  2. Arslan, A.; Adnan, S.H.: Environmental effect on temperature rise of transformer. In: 21st International Conference on Electricity Distribution, Frankfurt, pp. 6–9 (2011)

  3. Agah, S.M.; Abyaneh, H.A.: Distribution transformer loss-of-life reduction by increasing penetration of distributed generation. IEEE Trans. Power Deliv. 26, 1128–1136 (2011). https://doi.org/10.1109/TPWRD.2010.2094210

    Article  Google Scholar 

  4. Kennedy, B.W.: Energy Efficient Transformers. McGraw-Hill, New York (1998)

    Google Scholar 

  5. Susa, D.; Lehtonen, M.; Nordman, H.: Dynamic thermal modeling of distribution transformers. IEEE Trans. Power Deliv. 20, 1919–1929 (2005). https://doi.org/10.1109/TPWRD.2005.848675

    Article  Google Scholar 

  6. IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators: IEEE Std C57.91-2011 (Revision of IEEE Std C57.91-1995), pp. 1–123 (2012). https://doi.org/10.1109/IEEESTD.2012.6166928

  7. Perez, J.: Fundamental principles of transformer thermal loading and protection. In: 2010 63rd Annual Conference for Protective Relay Engineers, pp. 1–14 (2010)

  8. Pruente, J.: Loading thermal design and operation considerations. In: 46th Annual Transmission and Substation Design and Operation Symposium, The University of Texas at Arlington (2013)

  9. Hosseini, R.; Nourolahi, M.; Gharehpetian, G.B.: Determination of OD cooling system parameters based on thermal modeling of power transformer winding. Simul. Model. Pract. Theory 16, 585–596 (2008). https://doi.org/10.1016/j.simpat.2008.02.013

    Article  Google Scholar 

  10. Sefidgaran, M.; Mirzaie, M.; Ebrahimzadeh, A.: Reliability model of the power transformer with ONAF cooling. Int. J. Electr. Power Energy Syst. 35, 97–104 (2012). https://doi.org/10.1016/j.ijepes.2011.10.002

    Google Scholar 

  11. Bartley, W.H.: Investigating transformer failure. In: Proceedings of the 5th Weidmann-ACTI Annual Technical Conference on New Diagnostic Concepts for Better Asset Management (2006)

  12. Sathyanarayana, B.R.; Heydt, G.T.; Dyer, M.L.: Distribution transformer life assessment with ambient temperature rise projections. Electr. Power Compon. Syst. 37, 1005–1013 (2009). https://doi.org/10.1080/15325000902918875

    Article  Google Scholar 

  13. Zhang, J.; Li, X.; Vance, M.: Experiments and modeling of heat transfer in oil transformer winding with zigzag cooling ducts. Appl. Therm. Eng. 28, 36–48 (2008). https://doi.org/10.1016/j.applthermaleng.2007.02.012

    Article  Google Scholar 

  14. Swift, G.W.; Zocholl, E.S.; Bajpai, M.; Burger, J.F.; Castro, C.H.; Chano, S.R.; Cobelo, F.; de Sa, P.; Fennell, E.C.; Gilbert, J.G.; Grier, S.E.; Haas, R.W.; Hartmann, W.G.; Hedding, R.A.; Kerrigan, P.; Mazumdar, S.; Miller, D.H.; Mysore, P.G.; Nagpal, M.; Rebbapragada, R.V.; Thaden, M.V.; Uchiyama, J.T.; Usman, S.M.; Wardlow, J.D.; Yalla, M.: Adaptive transformer thermal overload protection. IEEE Trans. Power Deliv. 16, 516–521 (2001). https://doi.org/10.1109/61.956730

    Article  Google Scholar 

  15. Eckholz, K.; Knorr, W.; Schäfer, M.; Feser, K.; Cardillo, E.: New developments in transformer cooling calculations. In: International Conference on Large High Voltage Electric Systems, pp. 12–09 (2004)

  16. Chong, S.W.: Modifications in transformer design to reduce temperature rise. Doctoral Dissertation, Universiti Malaysia Sarawak (2009)

  17. Magnusson, L.: Design improvements of distribution transformers: how to improve conditions of transportation in Vietnam. Bachelor’s Thesis, University of Skövde (2014)

  18. Kulkarni, S.V.; Khaparde, S.A.: Transformer Engineering: Design and Practice. CRC Press, Boca Raton (2004)

    Google Scholar 

  19. Wang, X.-Q.; Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46, 1–19 (2007). https://doi.org/10.1016/j.ijthermalsci.2006.06.010

    Article  Google Scholar 

  20. Jardini, J.A.; Schmidt, H.P.; Tahan, C.M.V.; Oliveira, C.C.B.D.; Ahn, S.U.: Distribution transformer loss of life evaluation: a novel approach based on daily load profiles. IEEE Trans. Power Deliv. 15, 361–366 (2000). https://doi.org/10.1109/61.847274

    Article  Google Scholar 

  21. Sadati, S.B.; Tahani, A.; Darvishi, B.; Dargahi, M.; yousefi, H.: Comparison of distribution transformer losses and capacity under linear and harmonic loads. In: 2008 IEEE 2nd International Power and Energy Conference, pp. 1265–1269 (2008)

  22. Raeisian, L.; Niazmand, H.; Ebrahimnia-Bajestan, E.; Werle, P.: Thermal management of a distribution transformer: an optimization study of the cooling system using CFD and response surface methodology. Int. J. Electr. Power Energy Syst. 104, 443–455 (2019). https://doi.org/10.1016/j.ijepes.2018.07.043

    Article  Google Scholar 

  23. Chereches, N.-C.; Chereches, M.; Miron, L.; Hudisteanu, S.: Numerical study of cooling solutions inside a power transformer. Energy Procedia 112, 314–321 (2017). https://doi.org/10.1016/j.egypro.2017.03.1103

    Article  Google Scholar 

  24. Yamaç, Hİ.; Koca, A.: Comparison of cooling performances of pin-fin, plate-fin and plate-pin-fin by using numerical method. Gazi J. Eng. Sci. (2018). https://doi.org/10.30855/gmbd.2018.04.02.003

    Google Scholar 

  25. Russo, F.; Basse, N.T.: Scaling of turbulence intensity for low-speed flow in smooth pipes. Flow Meas. Instrum. 52, 101–114 (2016). https://doi.org/10.1016/j.flowmeasinst.2016.09.012

    Article  Google Scholar 

  26. Fu, W.; McCalley, J.D.; Vittal, V.: Risk assessment for transformer loading. IEEE Trans. Power Syst. 16, 346–353 (2001). https://doi.org/10.1109/59.932267

    Google Scholar 

  27. Farhan, M.; Saad Hameed, M.: Optimization of the cooling system of transformer using nanofluids and altering the geometry of fins. Bachelor’s Thesis, Institute of Space Technology (2017)

  28. IEEE Standard Test Procedure for Thermal Evaluation of Insulation Systems for Liquid-Immersed Distribution and Power Transformers. IEEE Std C57.100-2011 (Revision of IEEE Std C57.100-1999), pp. 1–37 (2012). https://doi.org/10.1109/IEEESTD.2012.6143968

  29. Gastelurrutia, J.; Ramos, J.C.; Larraona, G.S.; Rivas, A.; Izagirre, J.; del Río, L.: Numerical modelling of natural convection of oil inside distribution transformers. Appl. Therm. Eng. 31, 493–505 (2011). https://doi.org/10.1016/j.applthermaleng.2010.10.004

    Article  Google Scholar 

  30. Çengel, Y.A.: Heat Transfer: A Practical Approach. McGraw-Hill, New York (2003)

    Google Scholar 

  31. Versteeg, H.K.; Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education Limited, London (2007)

    Google Scholar 

  32. Georgilakis, P.S.: Spotlight on Modern Transformer Design. Springer, London (2009)

    Book  Google Scholar 

  33. Rafiq, M.; Lv, Y.; Li, C.: A Review on Properties, Opportunities, and Challenges of Transformer Oil-Based Nanofluids. https://www.hindawi.com/journals/jnm/2016/8371560/

  34. Munson, B.R.; Young, B.G.; Okiishi, T.H.: Fundamentals of Fluid Mechanics. Wiley, New York (2005)

    MATH  Google Scholar 

  35. Miller, D.S.: Internal Flow Systems. British Hydromechanics Research Association, London (1990)

    Google Scholar 

  36. Choi, S.U.S.; Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. Argonne National Lab, Lemont (1995)

    Google Scholar 

  37. Hwang, J.G.; O’Sullivan, F.; Zahn, M.; Hjortstam, O.; Pettersson, L.A.A.; Liu, R.: Modeling of Streamer Propagation in Transformer Oil-Based Nanofluids. In: 2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. pp. 361–366 (2008)

  38. Hwang, J.G.; Member, S.; Zahn, M.; O’sullivan, F.M.; Pettersson, L.A.A.; Hjortstam, O.; Liu, R.; Member, S.: Electron scavenging by conductive nanoparticles in oil insulated power transformers. In: 2009 Joint Electrostatics Conference, Boston. pp. 1–12 (2009)

  39. Wang, X.-Q.; Mujumdar, A.S.: A review on nanofluids—part II: experiments and applications. Br. J. Chem. Eng. 25, 631–648 (2008). https://doi.org/10.1590/S0104-66322008000400002

    Article  Google Scholar 

  40. Amoiralis, E.I.; Tsili, M.A.; Kladas, A.G.: Transformer design and optimization: a literature survey. IEEE Trans. Power Deliv. 24, 1999–2024 (2009). https://doi.org/10.1109/TPWRD.2009.2028763

    Article  Google Scholar 

  41. Aluminum Oxide | Al2O3 Material Properties. https://accuratus.com/alumox.html

  42. Jin, H.; Andritsch, T.; Tsekmes, I.A.; Kochetov, R.; Morshuis, P.H.F.; Smit, J.J.: Properties of mineral oil based silica nanofluids. IEEE Trans. Dielectr. Electr. Insul. 21, 1100–1108 (2014). https://doi.org/10.1109/TDEI.2014.6832254

    Article  Google Scholar 

  43. Yu, W.; Xie, H.: A review on nanofluids: preparation, stability mechanisms, and applications. https://www.hindawi.com/journals/jnm/2012/435873/

  44. Li, Y.; Zhou, J.; Tung, S.; Schneider, E.; Xi, S.: A review on development of nanofluid preparation and characterization. Powder Technol. 196, 89–101 (2009). https://doi.org/10.1016/j.powtec.2009.07.025

    Article  Google Scholar 

  45. Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M.: Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 388, 41–48 (2011). https://doi.org/10.1016/j.colsurfa.2011.08.005

    Article  Google Scholar 

  46. Bang, I.C.; Buongiorno, J.; Forrest, E.; Hu, L.W.; Williams, W.C.: Preparation and characterization of various nanofluids. In: TechConnect Briefs, vol. 2, pp. 408–411 (2006)

  47. Triton\(^{{\rm TM}}\) X-100 | Sigma-Aldrich. https://www.sigmaaldrich.com/catalog/substance/tritonx10012345900293111?lang=en&region=SG

  48. Rafiq, M.; Lv, Y.; Li, C.; Yi, K.: Effect of different nanoparticle types on breakdown strength of transformer oil. In: 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), pp. 436–440 (2016)

  49. Karsai, K.; Kiss, L.; Kerényi, D.: Large Power Transformers. Elsevier Science Pub. Co, Amsterdam (1987)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Kazmi Electric Works for the experimental support, and Mr. Engr. Momin Khan and Dr. Mahabat Khan for providing useful information, advice and help on various technical issues. This study is sponsored by Institute of Space Technology, Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Farhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhan, M., Saad Hameed, M., Suleman, H.M. et al. Heat Transfer Enhancement in Transformers by Optimizing Fin Designs and Using Nanofluids. Arab J Sci Eng 44, 5733–5742 (2019). https://doi.org/10.1007/s13369-019-03726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03726-9

Keywords

Navigation