Skip to main content
Log in

PRNG Based on Skew Tent Map

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Internet of things (IoT) devices should be designed taking security requirements into consideration, so that they can be used securely in open environments. Designing secure IoT devices requires the ability to design fast and secure cryptography modules. A component in these modules is the pseudorandom number generator (PRNG), which can be built using different strategies. Some of these strategies use chaotic maps, and in such cases, the chaotic map that is selected must be simple and feasible to implement in a digital device by using the IEEE-754 floating-point standard. The chaotic map must also generate number sequences whose statistical distribution looks uniform. In this way, this paper shows the digital implementation of a PRNG by using a non-scaled non-discretized skew tent map (STM). The proposed PRNG can produce uniformly distributed number sequences when the annulling chaos conditions are identified and avoided on the chaotic map. Furthermore, the pseudorandom sequences are generated in few milliseconds. Compared to similar PRNGs recently reported, the proposed PRNG has been successful, based on tests, such as the correlation coefficient, key sensitivity, statistical analysis, entropy analysis, key space and randomness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Madakam, S.; Ramaswamy, R.; Tripathi, S.: Internet of things (IoT): a literature review. J. Comput. Commun. 3(05), 164 (2015)

    Article  Google Scholar 

  2. Bakiri, M.; Guyeux, C.; Couchot, J.-F.; Marangio, L.; Galatolo, S.: A hardware and secure pseudorandom generator for constrained devices. IEEE Trans. Ind. Inf. 14(8), 3754–3765 (2018)

    Article  Google Scholar 

  3. Barakat, M.L.; Mansingka, A.S.; Radwan, A.G.; Salama, K.N.: Hardware stream cipher with controllable chaos generator for colour image encryption. IET Image Process. 8(1), 33–43 (2014)

    Article  Google Scholar 

  4. Yang, X.; Min, L.; Wang, X.: A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption. Chaos Interdiscip. J. Nonlinear Sci. 25(5), 053104 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Xiangjun, W.; Li, Y.; Kurths, J.: A new color image encryption scheme using CML and a fractional-order chaotic system. PLoS ONE 10(3), e0119660 (2015)

    Article  Google Scholar 

  6. Ismail, S.M.; Said, L.A.; Rezk, A.A.; Radwan, A.G.; Madian, A.H.; Abu-Elyazeed, M.F.; Solimane, A.M.: Generalized fractional logistic map encryption system based on FPGA. AEU Int. J. Electron. Commun. 82, 533–542 (2017)

    Article  Google Scholar 

  7. Zhou, S.; Wei, Z.; Wang, B.; Zheng, X.; Zhou, C.; Zhang, Q.: Encryption method based on a new secret key algorithm for color images. AEU Int. J. Electron. Commun. 70(1), 1–7 (2016)

    Article  Google Scholar 

  8. Xiang, D.; Ping, L.; Yanping, X.; Gao, S.; Chen, L.; Bao, X.: Truly random bit generation based on a novel random brillouin fiber laser. Opt. Lett. 40(22), 5415–5418 (2015)

    Article  Google Scholar 

  9. Liu, L.; Miao, S.; Cheng, M.; Gao, X.: A pseudorandom bit generator based on new multi-delayed Chebyshev map. Inf. Process. Lett. 116(11), 674–681 (2016)

    Article  Google Scholar 

  10. Bohl, E.: Simple true random number generator for any semi-conductor technology. IET Comput. Dig. Tech. 8(6), 239–245 (2014)

    Article  Google Scholar 

  11. Teh, J.S.; Samsudin, A.; Al-Mazrooie, M.; Akhavan, A.: Gpus and chaos: a new true random number generator. Nonlinear Dyn. 82(4), 1913–1922 (2015)

    Article  MathSciNet  Google Scholar 

  12. López-Leyva, J.A.; Arvizu-Mondragón, A.: Simultaneous dual true random numbers generator. Dyna 83(195), 93–98 (2016)

    Article  Google Scholar 

  13. Walters, P.: An Introduction to Ergodic Theory, vol. 79. Springer, Berlin (2000)

    MATH  Google Scholar 

  14. Fang, X.; Wang, Q.; Guyeux, C.; Bahi, J.M.: FPGA acceleration of a pseudorandom number generator based on chaotic iterations. J. Inf. Secur. Appl. 19(1), 78–87 (2014)

    Google Scholar 

  15. Marquardt, P.; Svaba, P.; Van Trung, T.: Pseudorandom number generators based on random covers for finite groups. Des. Codes Cryptogr. 64(1–2), 209–220 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liang, R.; Tan, X.; Zhou, H.; Wang, S.: An efficient parallel pseudorandom bit generator based on an asymmetric coupled chaotic map lattice. Pramana 85(4), 617–627 (2015)

    Article  Google Scholar 

  17. Senouci, A.; Bouhedjeur, H.; Tourche, K.; Boukabou, A.: FPGA based hardware and device-independent implementation of chaotic generators. AEU Int. J. Electron. Commun. 82(2), 211–220 (2017)

    Article  Google Scholar 

  18. Çavuşoğlu, Ü.; Akgül, A.; Kaçar, S.; Pehlivan, İ.; Zengin, A.: A novel chaos-based encryption algorithm over TCP data packet for secure communication. Secur. Commun. Netw. 9, 1285–1296 (2016)

    Article  Google Scholar 

  19. Caballero-Gil, P.; Caballero-Gil, C.; Molina-Gil, J.: RFID authentication protocol based on a novel EPC Gen2 PRNG. Int. Inf. Inst (Tokyo) Inf. 17(4), 1587 (2014)

    Google Scholar 

  20. Ukil, A.; Bandyopadhyay, S.; Bhattacharyya, A.; Pal, A.; Bose, T.: Lightweight security scheme for IoT applications using CoAP. Int. J. Pervasive Comput. Commun. 10(4), 372–392 (2014)

    Article  Google Scholar 

  21. Zhang, W.; Tang, S.; Zhang, L.; Ma, Z.; Song, J.: Chaotic stream cipher-based secure data communications over intelligent transportation network. Int. J. Antennas Propag. 2015, 10 (2015)

    Google Scholar 

  22. Ming, X.; Chen, Z.; Zhou, Z.; Zhang, B.: An advanced spread spectrum architecture using pseudorandom modulation to improve EMI in class D amplifier. IEEE Trans. Power Electron. 26(2), 638–646 (2011)

    Article  Google Scholar 

  23. Mandal, K.; Fan, X.; Gong, G.: Design and implementation of Warbler family of lightweight pseudorandom number generators for smart devices. ACM Trans. Embed. Comput. Syst. (TECS) 15(1), 1 (2016)

    Article  Google Scholar 

  24. Liao, Y.; Fan, X.: Mathematical calculation of sequence length in LFSR-dithered MASH digital delta-sigma modulator with odd initial condition. AEU Int. J. Electron. Commun. 80, 114–126 (2017)

    Article  Google Scholar 

  25. Feng, L.; Xiaoxing, G.: A new construction of pseudorandom number generator. J. Netw. 9(8), 2176–2183 (2014)

    Google Scholar 

  26. Payingat, J.; Pattathil, D.P.: Pseudorandom bit sequence generator for stream cipher based on elliptic curves. Math. Probl. Eng. 2015, 16 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Balková, L.; Bucci, M.; De Luca, A.; Hladkỳ, J.; Puzynina, S.: Aperiodic pseudorandom number generators based on infinite words. Theor. Comput. Sci. 647, 85–100 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhu, H.; Zhao, C.; Zhang, X.; Yang, L.: A novel iris and chaos-based random number generator. Comput. Secur. 36, 40–48 (2013)

    Article  Google Scholar 

  29. Spencer, J.: Pseudorandom bit generators from enhanced cellular automata. J. Cell. Autom. 10, 295–317 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Guo, W.; Zhao, J.; Ye, R.: A chaos-based pseudorandom permutation and bilateral diffusion scheme for image encryption. Int. J. Image Graph. Signal Process. 6(11), 50 (2014)

    Article  Google Scholar 

  31. Wang, Y.; Liu, Z.; Ma, J.; He, H.: A pseudorandom number generator based on piecewise logistic map. Nonlinear Dyn. 83(4), 2373–2391 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, K.; Yan, Q.; Shihua, Y.; Qi, X.; Zhou, Y.; Tang, Z.: High throughput pseudorandom number generator based on variable argument unified hyperchaos. VLSI Des. 2014, 9 (2014)

    Article  Google Scholar 

  33. Murillo-Escobar, M.A.; Cruz-Hernández, C.; Cardoza-Avendaño, L.; Méndez-Ramírez, R.: A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87(1), 407–425 (2017)

    Article  MathSciNet  Google Scholar 

  34. Lopez-Hernandez, J.; Vazquez-Medina, R.; Ortiz-Moctezuma, M.B.; Del-Rio-Correa, J.L.: Digital implementation of a pseudo-random noise generator using chaotic maps. IFAC Proc. Vol. 27, 053116 (2012)

    Google Scholar 

  35. Patidar, V.; Sud, K.K.; Pareek, N.K.: A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica 33(4), 441–452 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Jie, X.; Chargé, P.; Fournier-Prunaret, D.; Taha, A.-K.; Long, K.P.: Chaos generator for secure transmission using a sine map and an RLC series circuit. Sci. China Ser. F Inf. Sci. 53(1), 129–136 (2010)

    Article  Google Scholar 

  37. Machicao, J.; Bruno, O.M.: Improving the pseudo-randomness properties of chaotic maps using deep-zoom. Chaos 45(12), 209 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Palacios-Luengas, L.; Delgado-Gutiérrez, G.; Díaz-Méndez, J.A.; Vázquez-Medina, R.: Symmetric cryptosystem based on skew tent map. Multimed. Tools Appl. 77, 1–32 (2017)

    Google Scholar 

  39. Birkhoff, G.D.: Proof of the ergodic theorem. Proc. Natl. Acad. Sci. 17(12), 656–660 (1931)

    Article  MATH  Google Scholar 

  40. Lasota, A.; Mackey, M.C.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, vol. 97. Springer, Berlin (2013)

    MATH  Google Scholar 

  41. Lai, D.; Chen, G.; Hasler, M.: Distribution of the Lyapunov exponent of the chaotic skew tent map. Int. J. Bifurc. Chaos 9(10), 2059–2067 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hasler, M.; Maistrenko, Y.L.: An introduction to the synchronization of chaotic systems: coupled skew tent maps. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 856–866 (1997)

    Article  MathSciNet  Google Scholar 

  43. Zuras, D.; Cowlishaw, M.; Aiken, A.; Applegate, M.; Bailey, D.; Bass, S.; Bhandarkar, D.; Bhat, M.; Bindel, D.; Boldo, S.; et al.: IEEE standard for floating-point arithmetic. IEEE Std 754–2008, 1–70 (2008)

    Google Scholar 

  44. Kartalopoulos, S.V.: Annulling traps and fixed traps in chaos cryptography. In: New Technologies, Mobility and Security, 2008. NTMS’08. pp. 1–4. IEEE (2008)

  45. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical Report, DTIC Document (2001)

  46. L’Ecuyer, P.; Simard, R.: Testu01: a software library in ANSI C for empirical testing of random number generators. ACM Trans. Math. Softw. 33(4), 22 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Bakiri, M.; Couchot, J.-F.; Guyeux, C.: CIPRNG: a VLSI family of chaotic iterations post-processings for \({\mathbb{F}}_{2}\)-linear pseudorandom number generation based on Zynq MPSoC. IEEE Trans. Circuits Syst. I 65(5), 1628–1641 (2018)

    Article  Google Scholar 

  48. Bakiri, M.; Guyeux, C.; Couchot, J.-F.; Oudjida, A.K.: Survey on hardware implementation of random number generators on FPGA: theory and experimental analyses. Comput. Sci. Rev. 27, 135–153 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Akhavan, A.; Samsudin, A.; Akhshani, A.: Hash function based on piecewise nonlinear chaotic map. Chaos Solitons Fractals 42(2), 1046–1053 (2009)

    Article  MATH  Google Scholar 

  50. Akhshani, A.; Akhavan, A.; Mobaraki, A.; Lim, S.-C.; Hassan, Z.: Pseudo random number generator based on quantum chaotic map. Commun. Nonlinear Sci. Numer. Simul. 19(1), 101–111 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Guillermo Delgado Gutiérrez (Instituto Politécnico Nacional) for the technical support provided in conducting the experiments.

Funding

This work was supported by the Consejo Nacional de Ciencia y Tecnología, México [Grant No. CVU-373990 (L. Palacios-Luengas, Postdoctoral scholarship), CVU-668444 (J. L. Pichardo-Méndez, Ph.D. scholarship) and CVU-377075 (F. Rodríguez-Santos, Ph.D. scholarship)] and the Instituto Politécnico Nacional, México [Grant No. SIP20181398 (R. Vázquez-Medina)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vázquez-Medina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios-Luengas, L., Pichardo-Méndez, J.L., Díaz-Méndez, J.A. et al. PRNG Based on Skew Tent Map. Arab J Sci Eng 44, 3817–3830 (2019). https://doi.org/10.1007/s13369-018-3688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3688-y

Keywords

Navigation