Abstract
The objective of this study was to evaluate the performance of combined processes: adsorption/photodegradation of the acid orange 61. The adsorption was achieved on activated Algerian clay in batch mode. The influence of the adsorbent dose (1–6 g \({\hbox {L}}^{-1})\), initial acid orange 61 concentration (25–125 mg \({\hbox {L}}^{-1})\), pH (2–7) and temperature (293–323 K) on the adsorption of acid orange 61 has been studied. The maximum uptake was observed at pH \(\sim \) 2 for an initial concentration of 25 mg \({\hbox {L}}^{-1}\) at 293 K. The adsorption was fast with an elimination percentage of 84% within 20 min of contact time. The process is spontaneous and endothermic, and the Langmuir model is successfully applied to fit the experimental data. The coupling processes (adsorption/photocatalysis) were tested with a high efficiency. For the remaining concentrations, the removal yields reach 100% under solar light using \({\hbox {TiO}}_{2}\) as photocatalyst.
This is a preview of subscription content, access via your institution.
References
Azha, S.F.; Shahadat, M.; Ismail, S.: Acrylic polymer emulsion supported bentonite clay coating for the analysis of industrial dye. Dyes Pigm. 145, 550–560 (2017). https://doi.org/10.1016/j.dyepig.2017.05.009
Kooli, F.; Liu, Y.; Al-Faze, R.; Al, Suhaimi A.: Effect of acid activation of Saudi local clay mineral on removal properties of basic blue 41 from an aqueous solution. Appl. Clay Sci. 116, 23–30 (2015)
Lin, Y.; Chen, Z.; Megharaj, M.; Naidu, R.: Decoloration of acid violet red B by bentonite-supported nanoscale zero-valent iron: reactivity, characterization, kinetics and reaction pathway. Appl. Clay Sci. 93, 56–61 (2014)
Fernandes de Queiroga, L.N.; Soares, P.K.; Fonseca, M.G.; Eusébio de Oliveira, F.J.V.: Experimental design investigation for vermiculite modification: intercalation reaction and application for dye removal. Appl. Clay Sci. 126, 113–121 (2016)
Komadel, P.: Acid activated clays: materials in continuous demand. Appl. Clay Sci. 131, 84–99 (2016)
Salem, S.; Salem, A.; Babaei, A.A.: Preparation and characterization of nano porous bentonite for regeneration of semi-treated waste engine oil: applied aspects for enhanced recovery. Chem. Eng. J. 260, 368–376 (2015)
Mekatel, E.H.; Amokrane, S.; Aid, A.; Nibou, D.; Trari, M.: Adsorption of methyl orange on nanoparticles of a synthetic zeolite NaA/CuO. C. R. Chim. 18(3), 336–344 (2015)
Pandey, S.: A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J. Mol. Liq. 241, 1091–1113 (2017)
Houhoune, F.; Nibou, D.; Chegrouche, S.; Menacer, S.: Behaviour of modified hexadecyltrimethylammonium bromide bentonite toward uranium species. J. Environ. Chem. Eng. 4(3), 3459–3467 (2016)
Ngulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A.: An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review. J. Environ. Manage. 191, 35–57 (2017)
Li, W.; Zuo, P.; Xu, D.; Xu, Y.; Wang, K.; Bai, Y.; Ma, H.: Tunable adsorption properties of bentonite/carboxymethyl cellulose-g-poly (2-(dimethylamino) ethyl methacrylate) composites toward anionic dyes. Chem. Eng. Res. Des. 124, 260–270 (2017)
España, V.A.A.; Sarkar, B.; Biswas, B.; Rusmin, R.; Naidu, R.: Environmental applications of thermally modified and acid activated clay minerals: current status of the art. Environ. Technol. Innov. (2016). https://doi.org/10.1016/j.eti.2016.11.005
Özcan, A.; Ömeroğlu, Ç.; Erdoğan, Y.; Özcan, A.S.: Modification of bentonite with a cationic surfactant: an adsorption study of textile dye Reactive Blue 19. J. Hazard Mater. 140(1), 173–179 (2007)
Mu, B.; Tang, J.; Zhang, L.; Wang, A.: Preparation, characterization and application on dye adsorption of a well-defined two-dimensional superparamagnetic clay/polyaniline/\(\text{ Fe }_{{3}}\text{ O }_{{4}}\) nanocomposite. Appl. Clay Sci. 132, 7–16 (2016)
El-Zahhar, A.A.; Awwad, N.S.; El-Katori, E.E.: Removal of bromophenol blue dye from industrial waste water by synthesizing polymer-clay composite. J. Mol. Liq. 199, 454–461 (2014)
Chen, R.; Peng, F.; Su, S.: Synthesis and characterization of novel swelling tunable oligomeric poly (styrene-\(co\)-acrylamide) modified clays. J. Appl. Polym. Sci. 108(4), 2712–2717 (2008)
Belbachir, I.; Makhoukhi, B.: Adsorption of Bezathren dyes onto sodic bentonite from aqueous solutions. J. Taiwan Inst. Chem. E 75, 105–111 (2017)
Zivica, V.; Palou, M.T.: Physico-chemical characterization of thermally treated bentonite. Compos. Part B Eng. 68, 436–445 (2015)
Makhoukhi, B.; Didi, M.A.; Moulessehoul, H.; Azzouz, A.: Telon dye removal from Cu(II)-containing aqueous media using p-diphosphonium organo montmorillonite. Mediterr. J. Chem. 1(2), 44–55 (2011)
Mekatel, H.; Amokrane, S.; Bellal, B.; Trari, M.; Nibou, D.: Photocatalytic reduction of Cr(VI) on nanosized \(\text{ Fe }_{{2}}\text{ O }_{{3}}\) supported on natural Algerian clay: characteristics, kinetic and thermodynamic study. Chem. Eng. J. 200, 611–618 (2012)
Meshram, S.; Limaye, R.; Ghodke, S.; Nigam, S.; Sonawane, S.; Chikate, R.: Continuous flow photocatalytic reactor using ZnO–bentonite nanocomposite for degradation of phenol. Chem. Eng. J. 172(2), 1008–1015 (2011)
Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C.: Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997–3027 (2010)
Çalışkan, Y.; Yatmaz, H.C.; Bektaş, N.: Photocatalytic oxidation of high concentrated dye solutions enhanced by hydrodynamic cavitation in a pilot reactor. Process Saf. Environ. 111, 428–438 (2017)
Kaouah, F.; Boumaza, S.; Berrama, T.; Trari, M.; Bendjama, Z.: Preparation and characterization of activated carbon from wild olive cores (oleaster) by \(\text{ H }_{\text{3 }}~\text{ PO }_{\text{4 }}\) for the removal of Basic Red 46. J. Clean. Prod. 54, 296–306 (2013)
Bergaya, F.; Theng, B.K.G.; Lagaly, G.: General introduction: clays, clay minerals, and clay science. Dev. Clay Sci. 1, 1–18 (2006)
Rangabhashiyam, S.; Anu, N.; Nandagopal, M.G.; Selvaraju, N.: Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J. Environ. Chem. Eng. 2(1), 398–414 (2014)
Papegowda, P.K.; Syed, A.A.: Isotherm, kinetic and thermodynamic studies on the removal of methylene blue dye from aqueous solution using Saw Palmetto spent. Int. J. Environ. Res. 11(1), 91–98 (2017)
Ratnamala, G.M.; Deshannavar, U.B.; Munyal, S.; Tashildar, K.; Patil, S.; Shinde, A.: Adsorption of reactive blue dye from aqueous solutions using sawdust as adsorbent: optimization, kinetic, and equilibrium studies. Arab. J. Sci. Eng. 41(2), 333–344 (2016)
Elovich, S.Y.; Larinov, O.G.: Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form (II) verification of the equation of adsorption isotherm from solutions. Izv. Akad. Nauk. SSSR Otd. Khim. Nauk 2(2), 209–216 (1962)
Aid, A.; Amokrane, S.; Nibou, D.; Mekatel, E.; Trari, M.; Hulea, V.: Modeling biosorption of Cr(VI) onto Ulva compressa L. from aqueous solutions. Water Sci. Technol. 77(1), 60–69 (2017)
Subramani, S.E.; Thinakaran, N.: Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan. Process Saf. Environ. 106, 1–10 (2017)
Nibou, D.; Mekatel, H.; Amokrane, S.; Barkat, M.; Trari, M.: Adsorption of Zn\(^{\text{2+ }}\) ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies. J. Hazard Mater. 173, 637–646 (2010)
Mahmoud, M.R.; Lazaridis, N.K.: Simultaneous removal of nickel(II) and chromium(VI) from aqueous solutions and simulated wastewaters by foam separation. Sep. Sci. Technol. 50(9), 1421–1432 (2015)
Magdy, Y.H.; Altaher, H.: Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust. J. Environ. Chem. Eng. 6, 834–841 (2018)
Barkat, M.; Nibou, D.; Chegrouche, S.; Mellah, A.: Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions. Chem. Eng. Process. 48(1), 38–47 (2009)
Erol, A.; Aysegül, Ü.M.: Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem. Eng. J. 200, 59–67 (2012)
Akpan, U.G.; Hameed, B.H.: Parameters affecting the photocatalytic degradation of dyes using \(\text{ TiO }_{{2}}\)-based photocatalysts: a review. J. Hazar Mater. 170(2–3), 520–529 (2009)
Ayoub, H.; Kassir, M.; Raad, M.; Bazzi, H.; Hijazi, A.: Effect of dye structure on the photodegradation kinetic using \(\text{ TiO }_{{2}}\) nanoparticles. J. Mater. Sci. Chem. Eng. 5(6), 31–45 (2017)
Sugiyana, D.; Handajani, M.; Kardena, E.; Notodarmojo, S.: Photocatalytic degradation of textile containing reactive black 5 azo dye by using immobilized \(\text{ TiO }_{2}\)nanofiber-nanoparticle composite catalyst on glass plates. J. JSCE 2(1), 69–76 (2014)
Ajmal, A.; Majeed, I.; Malik, R.N.; Idriss, H.; Nadeem, M.A.: Principales and mechanisms of photocatalytic dye degradation on \(\text{ TiO }_{{2}}\) based photocatalysts: a comparative overview. RSC Adv. 4(70), 37003–37026 (2014)
Vohra, M.S.; Al-Suwaiyan, M.S.; Essa, M.H.; Chowdhury, M.M.I.; Rahman, M.M.; Labaran, B.A.: Application of solar photocatalysis and solar photo-fenton processes for the removal of some critical charged pollutants: mineralization trends and formation of reaction intermediates. Arab. J. Sci. Eng. 41(10), 3877–3887 (2016)
Brahimi, R.; Bessekhouad, Y.; Bouguelia, A.; Trari, M.: Improvement of eosin visible light degradation using PbS-sensititized \(\text{ TiO }_{{2}}\). J. Photochem. Photobiol. A 194(2), 173–180 (2008)
Acknowledgements
This work was financially supported by the Faculty of Mechanic and Engineering Process (USTHB, Algiers).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mekatel, E., Amorkrane, S., Trari, M. et al. Combined Adsorption/Photocatalysis Process for the Decolorization of Acid Orange 61. Arab J Sci Eng 44, 5311–5322 (2019). https://doi.org/10.1007/s13369-018-3575-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13369-018-3575-6
Keywords
- Algerian clay
- Acid orange 61
- Adsorption
- \({\hbox {TiO}}_{2}\)
- Photodegradation
- Solar light