Skip to main content

Combined Adsorption/Photocatalysis Process for the Decolorization of Acid Orange 61

Abstract

The objective of this study was to evaluate the performance of combined processes: adsorption/photodegradation of the acid orange 61. The adsorption was achieved on activated Algerian clay in batch mode. The influence of the adsorbent dose (1–6 g \({\hbox {L}}^{-1})\), initial acid orange 61 concentration (25–125 mg \({\hbox {L}}^{-1})\), pH (2–7) and temperature (293–323 K) on the adsorption of acid orange 61 has been studied. The maximum uptake was observed at pH \(\sim \) 2 for an initial concentration of 25 mg \({\hbox {L}}^{-1}\) at 293 K. The adsorption was fast with an elimination percentage of 84% within 20 min of contact time. The process is spontaneous and endothermic, and the Langmuir model is successfully applied to fit the experimental data. The coupling processes (adsorption/photocatalysis) were tested with a high efficiency. For the remaining concentrations, the removal yields reach 100% under solar light using \({\hbox {TiO}}_{2}\) as photocatalyst.

This is a preview of subscription content, access via your institution.

References

  1. Azha, S.F.; Shahadat, M.; Ismail, S.: Acrylic polymer emulsion supported bentonite clay coating for the analysis of industrial dye. Dyes Pigm. 145, 550–560 (2017). https://doi.org/10.1016/j.dyepig.2017.05.009

    Article  Google Scholar 

  2. Kooli, F.; Liu, Y.; Al-Faze, R.; Al, Suhaimi A.: Effect of acid activation of Saudi local clay mineral on removal properties of basic blue 41 from an aqueous solution. Appl. Clay Sci. 116, 23–30 (2015)

    Article  Google Scholar 

  3. Lin, Y.; Chen, Z.; Megharaj, M.; Naidu, R.: Decoloration of acid violet red B by bentonite-supported nanoscale zero-valent iron: reactivity, characterization, kinetics and reaction pathway. Appl. Clay Sci. 93, 56–61 (2014)

    Article  Google Scholar 

  4. Fernandes de Queiroga, L.N.; Soares, P.K.; Fonseca, M.G.; Eusébio de Oliveira, F.J.V.: Experimental design investigation for vermiculite modification: intercalation reaction and application for dye removal. Appl. Clay Sci. 126, 113–121 (2016)

    Article  Google Scholar 

  5. Komadel, P.: Acid activated clays: materials in continuous demand. Appl. Clay Sci. 131, 84–99 (2016)

    Article  Google Scholar 

  6. Salem, S.; Salem, A.; Babaei, A.A.: Preparation and characterization of nano porous bentonite for regeneration of semi-treated waste engine oil: applied aspects for enhanced recovery. Chem. Eng. J. 260, 368–376 (2015)

    Article  Google Scholar 

  7. Mekatel, E.H.; Amokrane, S.; Aid, A.; Nibou, D.; Trari, M.: Adsorption of methyl orange on nanoparticles of a synthetic zeolite NaA/CuO. C. R. Chim. 18(3), 336–344 (2015)

    Article  Google Scholar 

  8. Pandey, S.: A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J. Mol. Liq. 241, 1091–1113 (2017)

    Article  Google Scholar 

  9. Houhoune, F.; Nibou, D.; Chegrouche, S.; Menacer, S.: Behaviour of modified hexadecyltrimethylammonium bromide bentonite toward uranium species. J. Environ. Chem. Eng. 4(3), 3459–3467 (2016)

    Article  Google Scholar 

  10. Ngulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A.: An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review. J. Environ. Manage. 191, 35–57 (2017)

    Article  Google Scholar 

  11. Li, W.; Zuo, P.; Xu, D.; Xu, Y.; Wang, K.; Bai, Y.; Ma, H.: Tunable adsorption properties of bentonite/carboxymethyl cellulose-g-poly (2-(dimethylamino) ethyl methacrylate) composites toward anionic dyes. Chem. Eng. Res. Des. 124, 260–270 (2017)

    Article  Google Scholar 

  12. España, V.A.A.; Sarkar, B.; Biswas, B.; Rusmin, R.; Naidu, R.: Environmental applications of thermally modified and acid activated clay minerals: current status of the art. Environ. Technol. Innov. (2016). https://doi.org/10.1016/j.eti.2016.11.005

    Google Scholar 

  13. Özcan, A.; Ömeroğlu, Ç.; Erdoğan, Y.; Özcan, A.S.: Modification of bentonite with a cationic surfactant: an adsorption study of textile dye Reactive Blue 19. J. Hazard Mater. 140(1), 173–179 (2007)

    Article  Google Scholar 

  14. Mu, B.; Tang, J.; Zhang, L.; Wang, A.: Preparation, characterization and application on dye adsorption of a well-defined two-dimensional superparamagnetic clay/polyaniline/\(\text{ Fe }_{{3}}\text{ O }_{{4}}\) nanocomposite. Appl. Clay Sci. 132, 7–16 (2016)

    Article  Google Scholar 

  15. El-Zahhar, A.A.; Awwad, N.S.; El-Katori, E.E.: Removal of bromophenol blue dye from industrial waste water by synthesizing polymer-clay composite. J. Mol. Liq. 199, 454–461 (2014)

    Article  Google Scholar 

  16. Chen, R.; Peng, F.; Su, S.: Synthesis and characterization of novel swelling tunable oligomeric poly (styrene-\(co\)-acrylamide) modified clays. J. Appl. Polym. Sci. 108(4), 2712–2717 (2008)

    Article  Google Scholar 

  17. Belbachir, I.; Makhoukhi, B.: Adsorption of Bezathren dyes onto sodic bentonite from aqueous solutions. J. Taiwan Inst. Chem. E 75, 105–111 (2017)

    Article  Google Scholar 

  18. Zivica, V.; Palou, M.T.: Physico-chemical characterization of thermally treated bentonite. Compos. Part B Eng. 68, 436–445 (2015)

    Article  Google Scholar 

  19. Makhoukhi, B.; Didi, M.A.; Moulessehoul, H.; Azzouz, A.: Telon dye removal from Cu(II)-containing aqueous media using p-diphosphonium organo montmorillonite. Mediterr. J. Chem. 1(2), 44–55 (2011)

    Article  Google Scholar 

  20. Mekatel, H.; Amokrane, S.; Bellal, B.; Trari, M.; Nibou, D.: Photocatalytic reduction of Cr(VI) on nanosized \(\text{ Fe }_{{2}}\text{ O }_{{3}}\) supported on natural Algerian clay: characteristics, kinetic and thermodynamic study. Chem. Eng. J. 200, 611–618 (2012)

    Article  Google Scholar 

  21. Meshram, S.; Limaye, R.; Ghodke, S.; Nigam, S.; Sonawane, S.; Chikate, R.: Continuous flow photocatalytic reactor using ZnO–bentonite nanocomposite for degradation of phenol. Chem. Eng. J. 172(2), 1008–1015 (2011)

    Article  Google Scholar 

  22. Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C.: Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997–3027 (2010)

    Article  Google Scholar 

  23. Çalışkan, Y.; Yatmaz, H.C.; Bektaş, N.: Photocatalytic oxidation of high concentrated dye solutions enhanced by hydrodynamic cavitation in a pilot reactor. Process Saf. Environ. 111, 428–438 (2017)

    Article  Google Scholar 

  24. Kaouah, F.; Boumaza, S.; Berrama, T.; Trari, M.; Bendjama, Z.: Preparation and characterization of activated carbon from wild olive cores (oleaster) by \(\text{ H }_{\text{3 }}~\text{ PO }_{\text{4 }}\) for the removal of Basic Red 46. J. Clean. Prod. 54, 296–306 (2013)

    Article  Google Scholar 

  25. Bergaya, F.; Theng, B.K.G.; Lagaly, G.: General introduction: clays, clay minerals, and clay science. Dev. Clay Sci. 1, 1–18 (2006)

    Article  Google Scholar 

  26. Rangabhashiyam, S.; Anu, N.; Nandagopal, M.G.; Selvaraju, N.: Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J. Environ. Chem. Eng. 2(1), 398–414 (2014)

    Article  Google Scholar 

  27. Papegowda, P.K.; Syed, A.A.: Isotherm, kinetic and thermodynamic studies on the removal of methylene blue dye from aqueous solution using Saw Palmetto spent. Int. J. Environ. Res. 11(1), 91–98 (2017)

    Article  Google Scholar 

  28. Ratnamala, G.M.; Deshannavar, U.B.; Munyal, S.; Tashildar, K.; Patil, S.; Shinde, A.: Adsorption of reactive blue dye from aqueous solutions using sawdust as adsorbent: optimization, kinetic, and equilibrium studies. Arab. J. Sci. Eng. 41(2), 333–344 (2016)

    Article  Google Scholar 

  29. Elovich, S.Y.; Larinov, O.G.: Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form (II) verification of the equation of adsorption isotherm from solutions. Izv. Akad. Nauk. SSSR Otd. Khim. Nauk 2(2), 209–216 (1962)

    Google Scholar 

  30. Aid, A.; Amokrane, S.; Nibou, D.; Mekatel, E.; Trari, M.; Hulea, V.: Modeling biosorption of Cr(VI) onto Ulva compressa L. from aqueous solutions. Water Sci. Technol. 77(1), 60–69 (2017)

    Article  Google Scholar 

  31. Subramani, S.E.; Thinakaran, N.: Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan. Process Saf. Environ. 106, 1–10 (2017)

    Article  Google Scholar 

  32. Nibou, D.; Mekatel, H.; Amokrane, S.; Barkat, M.; Trari, M.: Adsorption of Zn\(^{\text{2+ }}\) ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies. J. Hazard Mater. 173, 637–646 (2010)

    Article  Google Scholar 

  33. Mahmoud, M.R.; Lazaridis, N.K.: Simultaneous removal of nickel(II) and chromium(VI) from aqueous solutions and simulated wastewaters by foam separation. Sep. Sci. Technol. 50(9), 1421–1432 (2015)

    Article  Google Scholar 

  34. Magdy, Y.H.; Altaher, H.: Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust. J. Environ. Chem. Eng. 6, 834–841 (2018)

    Article  Google Scholar 

  35. Barkat, M.; Nibou, D.; Chegrouche, S.; Mellah, A.: Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions. Chem. Eng. Process. 48(1), 38–47 (2009)

    Article  Google Scholar 

  36. Erol, A.; Aysegül, Ü.M.: Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem. Eng. J. 200, 59–67 (2012)

    Google Scholar 

  37. Akpan, U.G.; Hameed, B.H.: Parameters affecting the photocatalytic degradation of dyes using \(\text{ TiO }_{{2}}\)-based photocatalysts: a review. J. Hazar Mater. 170(2–3), 520–529 (2009)

    Article  Google Scholar 

  38. Ayoub, H.; Kassir, M.; Raad, M.; Bazzi, H.; Hijazi, A.: Effect of dye structure on the photodegradation kinetic using \(\text{ TiO }_{{2}}\) nanoparticles. J. Mater. Sci. Chem. Eng. 5(6), 31–45 (2017)

    Google Scholar 

  39. Sugiyana, D.; Handajani, M.; Kardena, E.; Notodarmojo, S.: Photocatalytic degradation of textile containing reactive black 5 azo dye by using immobilized \(\text{ TiO }_{2}\)nanofiber-nanoparticle composite catalyst on glass plates. J. JSCE 2(1), 69–76 (2014)

    Article  Google Scholar 

  40. Ajmal, A.; Majeed, I.; Malik, R.N.; Idriss, H.; Nadeem, M.A.: Principales and mechanisms of photocatalytic dye degradation on \(\text{ TiO }_{{2}}\) based photocatalysts: a comparative overview. RSC Adv. 4(70), 37003–37026 (2014)

    Article  Google Scholar 

  41. Vohra, M.S.; Al-Suwaiyan, M.S.; Essa, M.H.; Chowdhury, M.M.I.; Rahman, M.M.; Labaran, B.A.: Application of solar photocatalysis and solar photo-fenton processes for the removal of some critical charged pollutants: mineralization trends and formation of reaction intermediates. Arab. J. Sci. Eng. 41(10), 3877–3887 (2016)

    Article  Google Scholar 

  42. Brahimi, R.; Bessekhouad, Y.; Bouguelia, A.; Trari, M.: Improvement of eosin visible light degradation using PbS-sensititized \(\text{ TiO }_{{2}}\). J. Photochem. Photobiol. A 194(2), 173–180 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Faculty of Mechanic and Engineering Process (USTHB, Algiers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elhadj Mekatel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mekatel, E., Amorkrane, S., Trari, M. et al. Combined Adsorption/Photocatalysis Process for the Decolorization of Acid Orange 61. Arab J Sci Eng 44, 5311–5322 (2019). https://doi.org/10.1007/s13369-018-3575-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3575-6

Keywords

  • Algerian clay
  • Acid orange 61
  • Adsorption
  • \({\hbox {TiO}}_{2}\)
  • Photodegradation
  • Solar light