Skip to main content
Log in

New Model for Pore Pressure Prediction While Drilling Using Artificial Neural Networks

  • Research Article - Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Pore pressure is one of the main formation conditions that affects the efficiency of drilling operations and impacts its cost. Accurate prediction of the pore pressure and the parameters controlling it will help reduce the drilling cost and avoid in some cases catastrophic accidents. Many empirical models reported in the literature were used to predict the pore pressure based on either drilling parameters or log data. Empirical models require trends such as normal or abnormal pressure to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the pore pressure using one or maximum two AI methods (which are black box). There is no developed empirical correlation for pore pressure prediction based on optimized AI techniques. The objective of this paper is to predict the pore pressure based on both drilling parameters and log data, namely weight on bit (WOB), rotary speed (RPM), rate of penetration (ROP), mud weight (MW), bulk density (RHOB), porosity (\(\phi \)), and compressional time (\(\Delta {t}\)). Real field data will be used to predict the pore pressure using artificial neural network (ANN). Finally, for the first time, a new empirical correlation for pore pressure prediction will be developed based on the optimized ANN model. The obtained results showed that it is very important to combine the drilling parameters and the logging data to predict the pore pressure with a high accuracy. A new empirical correlation was developed using the optimized ANN method that can estimate pore pressure with high accuracy (correlation coefficient of 0.998 and average absolute percentage error of 0.17%). Unlike the published empirical models, the new model requires no prior pressure trends (such as normal or abnormal pressures) to perform prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, L.; Deng, J.; Zhu, H.; Lin, H.; Chen, Z.; Deng, F.; Yan, C.: A new pore pressure prediction method-back propagation artificial neural network. Res. Gate 18(18), 4093–4107 (2013)

    Google Scholar 

  2. Keshavarzi,; Jahanbakhshi, : Real-time prediction of pore pressure gradient through an artificial intelligence approach: a case study from one of middle east oil fields. Eur. J. Environ. Civ. Eng. 17(8), 675–686 (2013)

    Article  Google Scholar 

  3. Mitchell, R.L.; Miska, S.Z.; Aadnoy, B.S.: Fundamentals of Drilling Engineering. Society of Petroleum Engineers, Richardson (2011)

    Google Scholar 

  4. Adams, N.J.: Drilling Engineering: A Complete Well Planning Approach. Pennwell, Tulsa (1985)

    Google Scholar 

  5. Wang, Z.; Wang, R.: Pore pressure prediction using geophysical methods in carbonate reservoirs: current status, challenges and way ahead. J. Nat. Gas Sci. Eng. 27, 986–993 (2015)

    Article  Google Scholar 

  6. Hossain, M.E.; Al-Majed, A.A.: Fundamentals of Sustainable Drilling Engineering. Scrivener Publishing LLC, Hoboken (2015)

    Book  Google Scholar 

  7. Bourgoyne, A.T.; Chenevert, M.E.; Millheim, K.K.; Young Jr., : Applied Drilling Engineering, vol. 2. SPE Textbook Series, New York (1991)

    Google Scholar 

  8. Mouchet, J.P.; Mitchell, A.: Abnormal Pressure While Drilling. Manuals Techniques 2. Elf Aquitaine Editions, Boussens (1989)

    Google Scholar 

  9. Hottmann, C.E.; Johnson, R.K.: Estimation of formation pressures from log-derived shale properties. Soc. Pet. Eng. (1965). https://doi.org/10.2118/1110-PA

    Google Scholar 

  10. Bingham M.G.: A new approach to interpreting rock drillability. Re-printed from Oil Gas J. (1965)

  11. Jorden, J.R.; Shirley, O.J.: Application of drilling performance data to overpressure detection. Soc. Pet. Eng. (1966). https://doi.org/10.2118/1407-PA

    Google Scholar 

  12. Matthews, W.R.; Kelly, J.: How to predict formation pressure and fracture gradient. Oil Gas J. 65, 92–1066 (1967)

    Google Scholar 

  13. Pennebaker, E.S.: Detection of Abnormal-Pressure Formation from Seismic Field Data. American Petroleum Institute, Washington (1968)

    Google Scholar 

  14. Rehm, B.; McClendon, R.: Measurement of formation pressure from drilling data. Soc. Pet. Eng. (1971). https://doi.org/10.2118/3601-MS

    Google Scholar 

  15. Zamora, M.; Lord, D.L.: Practical analysis of drilling mud flow in pipes and annuli. Soc. Pet. Eng. (1974). https://doi.org/10.2118/4976-MS

    Google Scholar 

  16. Eaton, B.A.: The effect of overburden stress on geopressure prediction from well logs. Soc. Pet. Eng. (1972). https://doi.org/10.2118/3719-PA

    Google Scholar 

  17. Eaton, B.A.: The equation for geopressure prediction from well logs. Soc. Pet. Eng. (1975). https://doi.org/10.2118/5544-MS

    Google Scholar 

  18. Foster, J.B.: Estimation of formation pressures from electrical surveys-offshore Louisiana. Soc. Pet. Eng. (1966). https://doi.org/10.2118/1200-PA

    Google Scholar 

  19. Swarbrick, R.: Challenges of porosity-based pore pressure prediction. Can. Soc. Explor. Geophys. 27(07), 1–8 (2002)

    Google Scholar 

  20. Ifeanyi, N.R.: Comparing methods of predicting pore pressure. Int. J. Sci. Eng. Res. 6(6), 2229–5518 (2015). issn

    Google Scholar 

  21. Pranavathiyani G.: What is Artificial Intelligence (AI)? Retrieved from Mar 29, 2018. https://towardsdatascience.com/what-is-artificial-intelligence-ai-ad5ba87b55dd (2017)

  22. Elkatatny, S.M.; Zeeshan, T.; Mahmoud, M.A.: Real time prediction of drilling fluid rheological properties using artificial neural networks visible mathematical model (white box). J. Pet. Sci. Eng. 146, 1202–1210 (2016)

    Article  Google Scholar 

  23. Elkatatny, S.M.: Real time prediction of rheological parameters of KCl water-based drilling fluid using artificial neural networks. Arab. J. Sci. Eng. 42(4), 1655–1665 (2017a)

    Article  Google Scholar 

  24. Elkatatny, S.M.: New approach to optimize the rate of penetration using artificial neural network. Arab. J. Sci. Eng. (2017b). https://doi.org/10.1007/s13369-017-3022-0

  25. Mousa, T.; Elkatatny, S.M.; Mahmoud, M.A.; Abdulraheem, A.: Improved permeability correlations from well log data using artificial intelligence approaches. J. Energy Resour. Technol. 140(7) (2018). https://doi.org/10.1115/1.4039270

  26. Elkatatny, S.M.; Mahmoud, M.A.; Zeeshan, T.; Abdulraheem, A.: New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligent network. Neural Comput. Appl. (2017c). https://doi.org/10.1007/s00521-017-2850-x

  27. Elkatatny, S.M.; Zeeshan, T.; Mahmoud, M.A.; Abdulraheem, A.: New insights into porosity determination using artificial intelligence techniques for carbonate reservoirs. Petroleum (2018a). https://doi.org/10.1016/j.petlm.2018.04.002

  28. Abdulhameed, A.; Elkatatny, S.M.; Mahmoud, M.A.; Aburesh, M.; Abdulraheem, A.; Ali, A.: Determination of the total organic carbon (TOC) based on conventional well logs using artificial neural network. Int. J. Coal Geol. 179, 72–80 (2017)

    Article  Google Scholar 

  29. Elkatatny, S.M.; Mahmoud, M.: Development of new correlations for the oil formation volume factor in oil reservoirs using artificial intelligent white box technique. Petroleum 4, 178–186 (2017d)

    Article  Google Scholar 

  30. Tariq, Z.; Al-Nuaim, S.; Abdulraheem, A.; Khan, M.R.: New methodology to quantify productivity of vertical wells in naturally fractured solution gas drive reservoirs with dual porosity and dual permeability. Soc. Pet. Eng. (2016). https://doi.org/10.2118/185314-MS

    Google Scholar 

  31. Elkatatny, S.M.; Zeeshan, T.; Mahmoud, M.A.; Abdulraheem, A.; Mohamed, I.: An integrated approach for estimating static Young’s modulus using artificial intelligence tools. Neural Comput. Appl. (2018b). https://doi.org/10.1007/s00521-018-3344-1

  32. Elkatatny, S.M.: Application of artificial intelligence techniques to estimate the static Poisson’s ratio based on wireline log data. J. Energy Resour. Technol. 140, 072905 (2018c)

    Article  Google Scholar 

  33. Tariq, Z.; Elkatatny, S.M.; Mahmoud, M.A.; Abdulraheem, A.; Abdelwahab, A.Z.; Woldeamanuel, M.; Mohamed, I.M.: Development of new correlation of unconfined compressive strength for carbonate reservoir using artificial intelligence techniques. In: Paper ARMA-2017-0428 presented at the 51st U.S. Rock Mechanics/Geomechanics Symposium, 25–28 June, San Francisco, California, USA. American Rock Mechanics Association (2017a)

  34. Tariq, Z.; Elkatatny, S.; Mahmoud, M.; Ali, A.Z.; Abdulraheem, A.: A new approach to predict failure parameters of carbonate rocks using artificial intelligence tools. Soc. Pet. Eng. (2017b). https://doi.org/10.2118/187974-MS

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salaheldin Elkatatny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A., Elkatatny, S., Ali, A. et al. New Model for Pore Pressure Prediction While Drilling Using Artificial Neural Networks. Arab J Sci Eng 44, 6079–6088 (2019). https://doi.org/10.1007/s13369-018-3574-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3574-7

Keywords

Navigation