Skip to main content

Training ANFIS by Using an Adaptive and Hybrid Artificial Bee Colony Algorithm (aABC) for the Identification of Nonlinear Static Systems


Premise and consequent parameters of ANFIS are optimized by an optimization algorithm in its training process. A successful optimization algorithm should be utilized for an effective training process. In this study, an adaptive and hybrid artificial bee colony (aABC) algorithm, which is one of the variants of ABC algorithm, is employed in ANFIS training. aABC algorithm uses arithmetic crossover and adaptive neighborhood radius in the solution generating mechanism. aABC algorithm has gained the ability to obtain fast convergence and quality solution with these two control parameters. ANFIS is trained using aABC algorithm to obtain better solutions according to standard ABC algorithm. Firstly, five nonlinear static test systems are utilized for performance analysis of aABC algorithm. With aABC algorithm, performance increases up to about 16% compared to standard ABC algorithm. At the same time, better convergence is obtained in all examples. Wilcoxon signed rank test is applied to determine significance of the results. In addition, the results reached by aABC algorithm are compared with GA, PSO, HS algorithms and more effective results are found with aABC algorithm. As a result, it is seen that aABC algorithm is more successful than ABC, GA, PSO and HS in ANFIS training for identification of nonlinear static systems. Secondly, ANFIS is also trained by utilizing aABC algorithm for solving a real-world problem. Estimating number of foreign visitors coming to Turkey is selected as a real-world problem. The results obtained are compared standard with standard ABC algorithm, and more successful results are found by aABC algorithm.

This is a preview of subscription content, access via your institution.


  1. Vieira, J.; Dias, F.M.; Mota, A.: Neuro-fuzzy systems: a survey. In: 5th WSEAS NNA International Conference on Neural Networks and Applications, Udine, Italia (2004)

  2. Lin, C.-T.; Lee, C.S.G.: Neural-network-based fuzzy logic control and decision system. IEEE Trans. Comput. 40(12), 1320–1336 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993).

    Article  Google Scholar 

  4. Berenji, H.R.; Khedkar, P.: Learning and tuning fuzzy logic controllers through reinforcements. IEEE Trans. Neural Netw. 3(5), 724–740 (1992)

    Article  Google Scholar 

  5. Nauck, D.; Kruse, R.: Neuro-fuzzy systems for function approximation. Fuzzy Sets Syst. 101(2), 261–271 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Si, Tano; Oyama, T.; Arnould, T.: Deep combination of fuzzy inference and neural network in fuzzy inference software–FINEST. Fuzzy Sets Syst. 82(2), 151–160 (1996)

    Article  Google Scholar 

  7. Sulzberger, S.M.; Tschichold-Gurman, N.; Vestli, S.J.: FUN: optimization of fuzzy rule based systems using neural networks. In: IEEE International Conference on Neural Networks, 1993. IEEE, pp. 312–316 (1993)

  8. Juang, C.-F.; Lin, C.-T.: An online self-constructing neural fuzzy inference network and its applications. IEEE Trans. Fuzzy Syst. 6(1), 12–32 (1998)

    Article  Google Scholar 

  9. Kasabov, N.K.; Song, Q.: Dynamic Evolving Fuzzy Neural Networks with“ m-out-of-n” Activation Nodes for On-line Adaptive Systems. University of Otago, Department of Information Science, Dunedin (1999)

    Google Scholar 

  10. Kar, S.; Das, S.; Ghosh, P.K.: Applications of neuro fuzzy systems: a brief review and future outline. Appl. Soft Comput. 15, 243–259 (2014)

    Article  Google Scholar 

  11. Rashvand, H.F.; Salah, K.; Calero, J.M.A.; Harn, L.: Distributed security for multi-agent systems-review and applications. IET Inf. Secur. 4(4), 188–201 (2010)

    Article  Google Scholar 

  12. Yusof, N.; Zin, N.A.M.; Yassin, N.M.; Samsuri, P.: Evaluation of student’s performance and learning efficiency based on ANFIS. Soft Comput. Pattern Recognit. pp. 460–465 (2009).

  13. Zuviria, N.M.; Mary, S.L.; Kuppammal, V.: SAPM: ANFIS based prediction of student academic performance metric. In: 2012 3rd International Conference on Computing, Communication and Networking Technologies, ICCCNT 2012 (2012).

  14. Fazlic, L.B.; Avdagic, K.; Omanovic, S.: GA-ANFIS expert system prototype for prediction of dermatological diseases. In: Cornet, R. et al. (eds.) Digital Healthcare Empowering Europeans, pp. 622–626 (2015).

  15. Rodriguez, C.A.; Ponce, P.; Molina, A.: ANFIS and MPC controllers for a reconfigurable lower limb exoskeleton. Soft Comput. 21(3), 571–584 (2017).

    Article  Google Scholar 

  16. Boyacioglu, M.A.; Avci, D.: An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange. Expert Syst. Appl. 37(12), 7908–7912 (2010)

    Article  Google Scholar 

  17. Wei, L.-Y.: A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting. Appl. Soft Comput. 42, 368–376 (2016)

    Article  Google Scholar 

  18. Thasni, A.; Deepthi, V.; Francis, A.B.: ANFIS based color constancy algorithms selection system for dark image enhancement. In: International Conference on Next Generation Intelligent Systems (ICNGIS). IEEE, pp. 1–6 (2016)

  19. Hsia, K.-H.; Lien, S.-F.; Wang, C.-C.; Lee, T.-E.; Su, J.-P.: Further study on camera position estimation from image by ANFIS. Artif. Life Robot. 15(2), 142–146 (2010)

    Article  Google Scholar 

  20. Kose, U.; Arslan, A.: Forecasting chaotic time series via anfis supported by vortex optimization algorithm: applications on electroencephalogram time series. Arab. J. Sci. Eng. 42(8), 3103–3114 (2017)

    Article  Google Scholar 

  21. Yang, Y.; Chen, Y.; Wang, Y.; Li, C.; Li, L.: Modelling a combined method based on ANFIS and neural network improved by DE algorithm: a case study for short-term electricity demand forecasting. Appl. Soft Comput. 49, 663–675 (2016)

    Article  Google Scholar 

  22. Soodbakhsh Taleghani, M.; Saeedi Dehaghani, A.H.; Shafiee, M.E.: Modeling of precipitated asphaltene using the ANFIS approach. Pet. Sci. Technol. 35(3), 235–241 (2017)

    Article  Google Scholar 

  23. Gayen, P.; Jana, A.: An ANFIS based improved control action for single phase utility or micro-grid connected battery energy storage system. J. Clean. Prod. 164, 1034–1049 (2017)

    Article  Google Scholar 

  24. Aziz, M.S.E.-D.A.; ElSamahy, M.; Moustafa, M.; ElBendary, F.: A secure ANFIS based relay for turbo-generators phase backup protection. Indones. J. Electr. Eng. Comput. Sci. 3(2), 249–263 (2016)

    Article  Google Scholar 

  25. Kuo, Y.-H.: Predicting international inbound tourist arrivals in Taiwan–an ANFIS modeling approach. J. Technol. Sci. Inst. Northern Taipei 2011, 336–353 (2011)

    Google Scholar 

  26. Chen, M.-S.; Ying, L.-C.; Pan, M.-C.: Forecasting tourist arrivals by using the adaptive network-based fuzzy inference system. Expert Syst. Appl. 37(2), 1185–1191 (2010)

    Article  Google Scholar 

  27. Karaboga, D.; Kaya, E.: Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artif. Intell. Rev. (2018).

  28. Jurado, F.; Ortega, M.; Carpio, J.: Power quality enhancement in fuel cells using genetic algorithms and ANFIS architecture. In: 2006 IEEE International Symposium on Industrial Electronics. IEEE, pp. 757–762 (2006)

  29. Cárdenas, J.J.; García, A.; Romeral, J.L.; Kampouropoulos, K.: Evolutive ANFIS training for energy load profile forecast for an IEMS in an automated factory. In: IEEE International Conference on Emerging Technologies and Factory Automation, ETFA (2011).

  30. Turki, M.; Bouzaida, S.; Sakly, A.; M’Sahli, F.: Adaptive control of nonlinear system using neuro-fuzzy learning by PSO algorithm. In: Proceedings of the Mediterranean Electrotechnical Conference—MELECON, pp. 519–523 (2012).

  31. Hussain, K.; Salleh, M.N.M.: Optimization of fuzzy neural network using APSO for predicting strength of Malaysian SMEs. In: 10th Asian Control Conference: Emerging Control Techniques for a Sustainable World. ASCC 2015 (2015).

  32. Karaboga, D.; Kaya, E.: Training ANFIS using artificial bee colony algorithm for nonlinear dynamic systems identification. In: 2014 22nd Signal Processing and Communications Applications Conference, SIU 2014—Proceedings. pp. 493–496 (2014).

  33. Karaboga, D.; Kaya, E.: Training ANFIS by using the artificial bee colony algorithm. Turk. J. Electr. Eng. Comput. Sci. 25(3), 1669–1679 (2017)

    Article  Google Scholar 

  34. Karaboga, D.; Kaya, E.; : Training ANFIS using artificial bee colony algorithm. In: IEEE International Symposium on Innovations in Intelligent Systems and Applications. IEEE INISTA 2013 (2013).

  35. Wang, R.; Zhang, J.; Zhang, Y.; Wang, X.: Assessment of human operator functional state using a novel differential evolution optimization based adaptive fuzzy model. Biomed. Signal Process. Control 7(5), 490–498 (2012).

    Article  Google Scholar 

  36. Wang, J.; Gao, X.Z.; Tanskanen, J.M.A.; Guo, P.: Epileptic EEG signal classification with ANFIS based on harmony search method. In: Proceedings of the 2012 8th International Conference on Computational Intelligence and Security, CIS 2012, pp. 690–694 (2012).

  37. Mohanty, P.K.; Parhi, D.R.: A new hybrid optimization algorithm for multiple mobile robots navigation based on the CS-ANFIS approach. Memet. Comput. 7(4), 255–273 (2015).

    Article  Google Scholar 

  38. Nhu, H.N.; Nitsuwat, S.; Sodanil, M.: Prediction of stock price using an adaptive neuro-fuzzy inference system trained by firefly algorithm. In: 2013 International Computer Science and Engineering Conference. ICSEC 2013, pp. 302–307 (2013).

  39. Khosravi, A.; Nahavandi, S.; Creighton, D.: Prediction interval construction and optimization for adaptive neurofuzzy inference systems. IEEE Trans. Fuzzy Syst. 19(5), 983–988 (2011).

    Article  Google Scholar 

  40. Mohd Salleh, M.N.; Hussain, K.: Accelerated mine blast algorithm for ANFIS training for solving classification problems. Int. J. Softw. Eng. Appl. 10(6), 161–168 (2016).

    Google Scholar 

  41. Suja Priyadharsini, S.; Edward Rajan, S.; Femilin Sheniha, S.: A novel approach for the elimination of artefacts from EEG signals employing an improved Artificial Immune System algorithm. J. Exp. Theor. Artif. Intell. 28(1–2), 239–259 (2016).

  42. Karaboga, D.; Kaya, E.: An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training. Appl. Soft Comput. J. 49, 423–436 (2016).

    Article  Google Scholar 

  43. Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Derakhshan, S.; Pourmahdavi, M.; Abdolahnejad, E.; Reihani, A.; Ojaghi, A.: Numerical shape optimization of a centrifugal pump impeller using artificial bee colony algorithm. Comput. Fluids 81, 145–151 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ebubekir Kaya.

Ethics declarations

Conflict of interest

There is no conflict of interest statement related to our study entitled “Training ANFIS By Using An Adaptive and Hybrid Artificial Bee Colony Algorithm (aABC) For The Identification of Nonlinear Static Systems”.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaboga, D., Kaya, E. Training ANFIS by Using an Adaptive and Hybrid Artificial Bee Colony Algorithm (aABC) for the Identification of Nonlinear Static Systems. Arab J Sci Eng 44, 3531–3547 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: