Synthetic Evaluation of Natural Gas Pipeline Operation Schemes Based on the Multi-level Grey Cluster Decision Method

  • Xia Wu
  • Wenlong JiaEmail author
  • Zhuoran Li
Research Article - Petroleum Engineering


In this paper, a multi-level grey cluster decision method is proposed for the synthetic evaluation of operation schemes of natural gas pipelines with inexact data and insufficient information. A four-level index system is built as the synthetic evaluation criterion, aiming in balancing transmission volume, economic profit, and safety of the pipeline. The analytic hierarchy process (AHP) method is applied to calculate the weights of indexes. In order to assess the pipeline’s operation schemes with multi-level index, the principle of AHP method and the conventional grey cluster decision method are incorporated into a new multi-level grey evaluation method. The essential procedures of the method are illustrated in details, including computations of the grey class, whitenization weight function, decision coefficient matrix, weighted normalized decision coefficient matrix and synthetic evaluation score. Finally, this method is applied to seven operation schemes of Se–Ning–Lan gas pipeline in China. The results demonstrate that synthetic prior order of each scheme is not dependent on any one evaluation index, but on the comprehensive performance of the transmission volume, economic profit and pipeline safety. The application proves that the pipeline’s operation schemes can be reasonably evaluated even if insufficient data are used. The achievement of this paper provides a new analytical method as well as a powerful tool for the synthetic evaluation of operation schemes for natural gas pipelines.


Natural gas pipeline Operation schemes Grey cluster decision method Synthetic evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This paper is funded by the National Natural Science Foundation of China (Nos. 51504206, 51604233, 51474184), a sub-project of the National Science and Technology Major Project of China (No. 2016ZX05028-001-006).


  1. 1.
    Mokhatab, S.; Poe, W.A.: Handbook of Natural Gas Transmission and Processing. Elsevier, Amsterdam (2012)Google Scholar
  2. 2.
    Wu, X.; Li, C.; Jia, W.; He, Y.: Optimal operation of trunk natural gas pipelines via an inertia-adaptive particle swarm optimization algorithm. J. Nat. Gas Sci. Eng. 21, 10–18 (2014)CrossRefGoogle Scholar
  3. 3.
    Sanaye, S.; Mahmoudimehr, J.: Optimal design of a natural gas transmission network layout. Chem. Eng. Res. Des. 91(12), 2465–2476 (2013)CrossRefGoogle Scholar
  4. 4.
    Ríos-Mercado, R.Z.; Borraz-Sánchez, C.: Optimization problems in natural gas transportation systems: a state-of-the-art review. Appl. Energy 147, 536–555 (2015)CrossRefGoogle Scholar
  5. 5.
    MohamadiBaghmolaei, M.; Mahmoudy, M.; Jafari, D.; MohamadiBaghmolaei, R.; Tabkhi, F.: Assessing and optimization of pipeline system performance using intelligent systems. J. Nat. Gas Sci. Eng. 18, 64–76 (2014)CrossRefGoogle Scholar
  6. 6.
    Chebouba, A.; Yalaoui, F.; Smati, A.; Amodeo, L.; Younsi, K.; Tairi, A.: Optimization of natural gas pipeline transportation using ant colony optimization. Comput. Oper. Res. 36(6), 1916–1923 (2009)CrossRefGoogle Scholar
  7. 7.
    Vasconcelos, C.D.; Lourenço, S.R.; Gracias, A.C.; Cassiano, D.A.: Network flows modeling applied to the natural gas pipeline in Brazil. J. Nat. Gas Sci. Eng. 14, 211–224 (2013)CrossRefGoogle Scholar
  8. 8.
    Xiong, H.; Yang, Z.P.; Li, C.J.: Comprehensive estimation method for dispatch and operation of gas transmission pipelines. OGST 29(3), 197–200 (2010)Google Scholar
  9. 9.
    Jia, W.; Li, C.; Wu, X.: Application of multi-hierarchy grey relational analysis to evaluating natural gas pipeline operation schemes. Commun. Comput. Inf. Sci. 152, 245–251 (2011)Google Scholar
  10. 10.
    Liu, H.; Wang, W.P.; Zhang, Q.S.; Cai, Y.H.: Knowledge integration of cluster networks based on grey relational analysis knowledge similarities. J. Grey Syst. 25(1), 12–23 (2013)Google Scholar
  11. 11.
    Wing-gun, W.; Guiping, H.: Gray evaluation method of concrete pavement comprehensive condition. J. Transp. Eng. 125(6), 547–551 (1999)CrossRefGoogle Scholar
  12. 12.
    Wang, X.; Qi, L.; Chen, C.; Tang, J.; Jiang, M.: Grey system theory based prediction for topic trend on Internet. Eng. Appl. Artif. Intell. 29, 191–200 (2014)CrossRefGoogle Scholar
  13. 13.
    Liu, S.; Lin, Y.; Forrest, J.Y.L.: Grey Systems: Theory and Applications, vol. 68. Springer, Berlin (2010)Google Scholar
  14. 14.
    Tserng, H.P.; Ngo, T.L.; Chen, P.C.; Quyen Tran, L.: A grey system theory-based default prediction model for construction firms. Comput.-Aided Civ. Infrastruct. Eng. 30(2), 120–134 (2015)CrossRefGoogle Scholar
  15. 15.
    Zhai, L.-Y.; Khoo, L.-P.; Zhong, Z.-W.: Design concept evaluation in product development using rough sets and grey relation analysis. Expert. Syst. Appl. 36(3), 7072–7079 (2009)CrossRefGoogle Scholar
  16. 16.
    Liu, S.F.; Forrest, J.: The current developing status on grey system theory. J. Grey Syst. 19(2), 111–123 (2007)Google Scholar
  17. 17.
    Deng, J.: Introduction to grey system theory. J. Grey Syst. 1(1), 1–24 (1989)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Mousavi, S.M.; Mirdamadi, S.; Siadat, A.; Dantan, J.; Tavakkoli-Moghaddam, R.: An intuitionistic fuzzy grey model for selection problems with an application to the inspection planning in manufacturing firms. Eng. Appl. Artif. Intell. 39, 157–167 (2015)CrossRefGoogle Scholar
  19. 19.
    Guo, X.; Liu, S.; Wu, L.; Gao, Y.; Yang, Y.: A multi-variable grey model with a self-memory component and its application on engineering prediction. Eng. Appl. Artif. Intell. 42, 82–93 (2015)CrossRefGoogle Scholar
  20. 20.
    Liu, S.F.: Grey System Theory and Its Application, 8th edn. Science Press, Beijing (2017). (in Chinese)Google Scholar
  21. 21.
    Li, C.; Jia, W.; Liu, E.; Wu, X.: A multi-hierarchy grey relational analysis model for natural gas pipeline operation schemes comprehensive evaluation. Int. J. Ind. Eng.-Theory 19(6), 241–251 (2012)Google Scholar
  22. 22.
    Wang, Y.Q.; Chen, W.J.: Multilevel grey evaluation on the risk of chinese oil companies’ transnational M&A project. In: Proceedings of 19th international conference on industrial engineering and engineering management, pp. 785–795 (2013)CrossRefGoogle Scholar
  23. 23.
    Rios-Mercado, R.Z.; Borraz-Sanchez, C.: Optimization problems in natural gas transportation systems: a state-of-the-art review. APEN 147, 536–555 (2015)Google Scholar
  24. 24.
    Wu, X.; Li, C.; He, Y.; Jia, W.: Operation optimization of natural gas transmission pipelines based on stochastic optimization algorithms: a review. Math. Probl. Eng. Article ID 1267045 (2018)Google Scholar
  25. 25.
    Li, Z.; You, J.; Jia, W.; He, Y.: An improved Parrish–Prausnitz (PP) model to predict the hydrate formation condition of natural gas with a high volume content of \(\text{ CO }_{2}\). J. Nat. Gas Sci. Eng. 37, 479–486 (2017)CrossRefGoogle Scholar
  26. 26.
    Schmoldt, D.; Kangas, J.; Mendoza, G.A.; Pesonen, M.: The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making, vol. 3. Springer, Berlin (2013)Google Scholar
  27. 27.
    Saaty, T.L.: How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48(1), 9–26 (1990)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008)MathSciNetGoogle Scholar
  29. 29.
    Rahimnia, F.; Moghadasian, M.; Mashreghi, E.: Application of grey theory approach to evaluation of organizational vision. Grey Syst. Theory Appl. 1(1), 33–46 (2011)CrossRefGoogle Scholar
  30. 30.
    Zhou, L.; Xu, S.: Application of grey clustering method in eutrophication assessment of wetland. J. Am. Sci. 2(4), 52–57 (2006)Google Scholar
  31. 31.
    Ye, J.; Dang, Y.: A novel grey fixed weight cluster model based on interval grey numbers. Grey Syst. Theory Appl. 7(2), 156–167 (2017)CrossRefGoogle Scholar
  32. 32.
    Liu, S.; Yang, Y.: Explanation of terms of grey clustering evaluation models. Grey Syst. Theory Appl. 7(1), 129–135 (2017)CrossRefGoogle Scholar
  33. 33.
    Chen, D.L.; Fu, M.; Jiang, X.R.; Song, D.W.: The investment decision-making index system and the grey comprehensive evaluation method under hybrid cloud. Adv. Intell. Soft Comput. 169, 171–176 (2012)Google Scholar
  34. 34.
    Xuejun, T.; Yao, C.: Multi-level grey evaluation of corporate sustainable growth. In: Proceesing of 2007 IEEE GSIS, Nanjing, pp. 284–288 (2007)Google Scholar
  35. 35.
    Sun, Y.; Chen, S.F.; Huang, K.: Adaptive optimal route selection based on gray evaluation theory. China J. Highw. Transp. 16(4), 87–90 (2003)Google Scholar
  36. 36.
    Abbaspour, M.; Chapman, K.: Nonisothermal transient flow in natural gas pipeline. J. Appl. Mech. 75(3), 031018 (2008)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.School of Petroleum EngineeringSouthwest Petroleum UniversityChengduChina
  2. 2.CNPC Key Laboratory of Oil and Gas Storage and TransportationSouthwest Petroleum UniversityChengduChina
  3. 3.Cullen School of EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations