Skip to main content

Advertisement

Log in

Effect of Micelle Structure on the Viscosity of Sulfonate Gemini Surfactant Solution

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In order to optimize the thickening performance of clean fracturing fluid, a series of sulfonate Gemini surfactants (DSm-s-m) were synthesized and identified by FTIR, \(^{1}\hbox {HNMR}\), and \(^{13}\hbox {CNMR}\). The surface tension curve was obtained by testing the surface tension of the surfactant at different concentrations, and the viscosity of sulfonate Gemini surfactant solution was measured by rheometer and investigated through changing the molecular structure. The microstructures of the solution were studied by SEM. The experimental results indicated that the CMC of the surfactant decreased with increasing the length of the hydrophobic chain. Moreover, the viscosity of sulfonate Gemini surfactant changed with the carbon number (s or m) of spacer group and hydrophobic chain, and the DS18-3-18 had superior viscosity behavior. The viscosity of the DS18-3-18 solution decreased with the temperature increase but was still \(13.25 \hbox { mPa}\cdot \hbox {s}\) at \(90\,{^{\circ }}\hbox {C}\). The microstructures of DS18-s-18 solution demonstrated that the micelles of the DS18-s-18 solution changed from spherical to layer like and finally to commixture of spherical/layer like with increasing the carbon number of spacer group (\(s=2,3,4\)), and the viscosity of the solution increased firstly and then decreased correspondingly. The number of sheet micelles and bulk density in DS18-3-18 solution decreased with the increase of temperature, causing the decrease of the viscosity in solution. However, the intact sheet micelles still existing in solution at \(90\,{^{\circ }}\hbox {C}\) meant that the DS18-3-18 had prominent temperature-resistant viscosity behavior. These phenomena illustrated that changing the molecular structure of surfactants could cause changes in their microstructure and finally lead to a change in the viscosity of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckwith, R.: Depending on guar for shale oil and gas development. J. Pet. Technol. 64, 44–55 (2012). https://doi.org/10.2118/1212-0044-JPT

    Article  Google Scholar 

  2. Li, L.; Nasr-El-Din, H.A.; Cawiezel, K.E.: Rheological properties of a new class of viscoelastic surfactant. SPE Prod. Oper. (2010). https://doi.org/10.2118/121716-PA

    Google Scholar 

  3. Dai, C.; Wang, T.; Zhao, M.; Sun, X.; Gao, M.; Xu, Z.; Guan, B.; Liu, P.: Impairment mechanism of thickened supercritical carbon dioxide fracturing fluid in tight sandstone gas reservoirs. Fuel 211, 60–66 (2018)

    Article  Google Scholar 

  4. Yan, Z.; Dai, C.; Zhao, M.; Feng, H.; Gao, B.; Li, M.: Research and application progress of cleaning fracturing fluid. Oilfield Chem. 32, 141–145 (2015). https://doi.org/10.19346/j.cnki.1000-4092.2015.01.030

    Google Scholar 

  5. Zana, R.: Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv. Colloid Interface Sci. 97, 205 (2002). https://doi.org/10.1016/S0001-8686(01)00069-0

    Article  Google Scholar 

  6. Lai, L.; Mei, P.; Wu, X.; Hou, C.; Zheng, Y.; Liu, Y.: Micellization of anionic Gemini surfactants and their interaction with polyacrylamide. Colloid Polym. Sci. 292, 2821–2830 (2014). https://doi.org/10.1007/s00396-014-3304-y

    Article  Google Scholar 

  7. Pei, X.; Zhao, J.; Ye, Y.; You, Y.; Wei, X.: Wormlike micelles and gels reinforced by hydrogen bonding in aqueous cationic Gemini surfactant systems. Soft Matter. 7, 2953–2960 (2011). https://doi.org/10.1039/C0SM01071E

    Article  Google Scholar 

  8. Li, H.; Yang, H.; Yan, Y.; Wang, Q.; He, P.: Synthesis and solution properties of cationic Gemini surfactants with long unsaturated tails. Surf. Sci. 604, 1173–1178 (2010). https://doi.org/10.1016/j.susc.2010.03.033

    Article  Google Scholar 

  9. Bhadani, A.; Shrestha, R.G.; Koura, S.; Endo, T.; Sakai, K.; Abe, M.; Sakai, H.: Self-aggregation properties of new ester-based Gemini surfactants and their rheological behavior in the presence of cosurfactant–monolaurin. Coll. Surf. A Physicochem. Eng. Asp. 461, 258–266 (2014). https://doi.org/10.1016/j.colsurfa.2014.08.001

    Article  Google Scholar 

  10. Yang, X.: Rheological properties of salt-free symmetry-quaternary ammonium Gemini surfactants aqueous solutions. Phys. Chem. Liq. 52, 78–87 (2014). https://doi.org/10.1080/00319104.2013.798238

    Article  Google Scholar 

  11. Ge, Y.; Zhang, Q.; Liu, Z.: Synthesis and aggregation behavior of gemini surfactants with piperidinium structure. J. Wuhan Inst. Technol. 39, 231–238 (2017). https://doi.org/10.3969/j.issn.1674?2869.2017.03.005

    Google Scholar 

  12. Akbas, H.; Aylin, E.; Boz, M.: Aggregation and thermodynamic properties of some cationic Gemini surfactants. J. Surfactants Deterg. 15, 33–40 (2012). https://doi.org/10.1007/s11743-011-1270-7

    Article  Google Scholar 

  13. Han, L.; Chen, H.; Luo, P.: Viscosity behavior of cationic Gemini surfactants with long alkyl chains. Surf. Sci. 564, 141–148 (2004). https://doi.org/10.1016/j.susc.2004.06.172

    Article  Google Scholar 

  14. Hong, Y.: Preparation and Performance of Quaternary Ammonium Gemini Surfactant. Shanxi University of Science and Technology, Xi, An (2014)

  15. Cui, X.; Chen, H.; Yang, X.; Liu, A.; Mao, S.; Cheng, G.; Yuan, H.; Luo, P.; Du, Y.: Aggregation behavior of quaternary ammonium dimeric surfactant C14-\(s\)-\(\text{ C14 }\cdot 2\text{ Br }\) micelles. Acta Phys.-Chim. Sin 23, 317–321 (2007). https://doi.org/10.1016/S1872-1508(07)60025-4

    Article  Google Scholar 

  16. Li, G.; Ren, T.; Wang, Y.; Wu, Y.; Wei, Q.; Xu, J.: Mechanism of viscosity increased by ammonium Gemini surfactant self-assembly. J. Ch. Univ. Pet. (Edit. Nat. Sci.) 40, 3–9 (2016). https://doi.org/10.3969/j.issn.1673-5005.2016.06.021

    Google Scholar 

  17. Liu, Y.; Guo, L.; Bi, K.; Ren, W.; Liu, L.; Li, Y.; Han, L.: Synthesis of cationic Gemini surfactant and its application in water blocking. Fine Spec. Chem. 19, 8–10 (2011). https://doi.org/10.19482/j.cn11-3237.2011.08.004

    Google Scholar 

  18. Zana, R.; Xia, J.: Gemini surfactants : synthesis, interfacial and solution-phase behavior, and applications. New York; (2004)

  19. Tang, S.; Zhao, C.; Tian, L.; Zhou, T.: Temperature-resistance clean fracturing fluid with carboxylate Gemini surfactant: a case study of tight sandstone gas reservoirs in the Tarim Basin. Nat. Gas Industry 36, 45–51 (2016). https://doi.org/10.3787/j.issn.1000-0976.2016.06.007

    Google Scholar 

  20. Du, X.; Li, L.; Lu, Y.; Yang, Z.: Unusual viscosity behavior of a kind of anionic Gemini surfactant. Colloids Surf. A Physicochem. Eng. Asp. 308, 147–149 (2007). https://doi.org/10.1016/j.colsurfa.2007.05.020

    Article  Google Scholar 

  21. Zana, R.; Talmon, Y.: Dependence of aggregate morphology on structure of dimeric surfactants. Nature 362, 228–230 (1993). https://doi.org/10.1038/362228a0

    Article  Google Scholar 

  22. Huang, Z.; Li, C.; Liang, Y.; Han, S.; Wang, L.: Improvement on the synthetic method of N, \(\text{ N }^\prime \)-dilauroylethylenediamine-diacetic acid. Fine Chem. 36, 47–50 (2002). https://doi.org/10.3321/j.issn:1003-5214.2002.01.001

    Google Scholar 

  23. Hikota, T.; Meguro, K.: Preparation and properties of sodium alkyl \(\upbeta \)-sulfopropionates. J. Am. Oil Chem. Soc. 47, 158–161 (1970)

    Article  Google Scholar 

  24. El-Sukkary, M.M.A.; Shaker, N.O.; Ismail, D.A.; Ahmed, S.M.; Awad, A.I.: Preparation and evaluation of some amide ether carboxylate surfactants. Egypt. J. Pet. 21, 11–17 (2012). https://doi.org/10.1016/j.ejpe.2012.02.002

    Article  Google Scholar 

  25. Adewuyi, A.; Göpfert, A.; Wolff, T.: Succinyl amide Gemini surfactant from Adenopus breviflorus seed oil: a potential corrosion inhibitor of mild steel in acidic medium. Ind. Crops Prod. 52, 439–449 (2014)

    Article  Google Scholar 

  26. Hajibeygi, M.; Shafiei-Navid, S.; Shabanian, M.; Vahabi, H.: Novel poly(amide-azomethine) nanocomposites reinforced with polyacrylic acid- co -2-acrylamido-2-methylpropanesulfonic acid modified LDH: Synthesis and properties. Appl. Clay Sci. 157, 165–176 (2018)

    Article  Google Scholar 

  27. Geng, X.F.; Hu, X.Q.; Xia, J.J.; Jia, X.C.: Synthesis and surface activities of a novel di-hydroxyl-sulfate-betaine-type zwitterionic Gemini surfactants. Appl. Surf. Sci. 271, 284–290 (2013). https://doi.org/10.1016/j.apsusc.2013.01.185

    Article  Google Scholar 

  28. Ouyang, X.; Tang, S.; Liu, S.; Liang, C.; Hu, X.: Advance in regularity research on critical micelle concentration of Gemini surfactants. Fault-Block Oil Gas Field. 19, 654–657 (2012). https://doi.org/10.6056/dkyqt201205027

    Google Scholar 

  29. Gao, D.; Yu, M.: The comparative study of influence factors of ionic Gemini surfactant solution’s rheology. J. Chongqing Univ. Sci. Technol. (Nat. Sci. Edit.) 14, 101–104 (2012). https://doi.org/10.19406/j.cnki.cqkjxyxbzkb.2012.04.028

    Google Scholar 

  30. Zhu, Q.: Study on Synthesis, Properties and Applications in Enhanced Oil Recovery (EOR) of Novel Gemini Surfactant. Chengdu University of Technology, Chengdu (2009)

  31. Pi, Y.; Zhang, L.; Liu, Z.; Gao, D.; Tang, S.: Research on rheological properties of sulfuric acid ester salt Gemini surfactant solution. J. Oil Gas Technol. 33, 135–138 (2011). https://doi.org/10.3969/j.issn.1000-9752.2011.06.030

    Google Scholar 

  32. Liao, H.; Tang, S.; Lei, X.; Wang, X.: Effect of spacer group on Gemini surfactants properties. Fine Spec. Chem. 21, 39–42 (2013). https://doi.org/10.3969/j.issn.1008-1100.2013.08.011

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51474035): The fundamental study of high-temperature clean fracturing fluid constructed by anionic Gemini surfactant and nanoparticle and Innovation Fund Project of Hubei Cooperative Innovation Center of Unconventional Oil and Gas (HBUOG-2014-2): adsorption desorption characteristics of shale gas and optimization of clean fracturing fluid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tang Shanfa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahui, Z., Shanfa, T., Jiaxin, W. et al. Effect of Micelle Structure on the Viscosity of Sulfonate Gemini Surfactant Solution. Arab J Sci Eng 44, 259–267 (2019). https://doi.org/10.1007/s13369-018-3552-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3552-0

Keywords

Navigation