Skip to main content
Log in

A New Hybrid Position/Force Control Scheme for Coordinated Multiple Mobile Manipulators

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a new hybrid position/force control scheme is proposed for coordinated multiple mobile manipulators holding a rigid object. The problem of the controller design for multiple mobile manipulators is much complicated as compared to single mobile manipulator. Many of the position/force control schemes for coordinated multiple mobile manipulators assume exact knowledge of the dynamical model. But the dynamic model of the coordinated multiple mobile manipulators is highly uncertain and faces external disturbances, uncertain environment intervention, etc. Therefore, model-based controller is inadequate to deal with such uncertain systems. In the proposed scheme, the inefficiency of the model-based controller is recovered by combining with RBF neural network-based mode-free controller along with a compensation controller. RBF neural network is utilized to estimate the unmodeled dynamics of the system without requiring the offline learning. The compensation controller is utilized to neutralize the effects of the friction terms, external disturbances, and the network reconstruction error. The online adaptation of the weights and the parameter updates are utilized in the Lyapunov function to make the system to be stable. Furthermore, the proposed control scheme assures that both the position and the internal force trajectory errors converge asymptotically. To depict the adequacy of the proposed control scheme, simulation results are provided with different existing controllers in a comparative manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

h :

Number of mobile manipulators

\(q_{bi}\in R^{p_{bi}}\) :

Generalized coordinate vector for mobile base

\(q_{mi}\in R^{p_{mi}}\) :

Generalized coordinate vector for mobile arm

\(\lambda _{i}\in R^{p}\) :

Lagrangian multiplier associated with the mobile base and the manipulator’s arm

\(\tau _i \in R^{t}\) :

Torque input vector for ith manipulator

\(\mu _{i}\) :

Joint position vector for the ith manipulator

\(f_i\in R^{p}\) :

Interacting force between the end-effector of the ith manipulator and the object

\({\varTheta _i}(q_{bi})\in R^{p_{bi}\times (p_{bi}-k)}\) :

A smooth and linearly independent set of vector fields

\(y_{o}\) :

Coordinate vector of the object frame

\(p_{o}\) :

Dimension of the operational coordinate of the object

\(F_{1}\in R^{p_o}\) :

Resultant force vector acting at the center of mass of the object

\(F_{I}\in R^{h(p-k)}\) :

Internal force vector

\(J_o(y_o)\in R^{h(p-k)\times {p_o}}\) :

Jacobian matrix from the object’s frame to the manipulator’s end-effector frame

\(y_{ei}\in R^{p-k}\) :

Position and the orientation vector of the ith manipulator

\(s_i>0\) \((1\leqslant {i}\leqslant 3)\) :

Finite constants

\(K_{o}\), \(K_{f}\), \(K_{d}\) :

Positive definite gain matrices

\(y \in R^{5l}\) :

Input vector

N :

Number of nodes of the neural network

\(\varepsilon _N\) :

An arbitrary small positive constant

\(\varepsilon (y)\) :

Neural network reconstruction error

\(\varPsi (y)\) :

Gaussian activation function

\(\gamma , \delta \) :

Positive constants

\(\varphi \in R^{s}\) :

Parameter vector

\(\varGamma _\varPi \)\(\varGamma _\varphi \) :

Positive definite symmetric matrices

\(L ^2\) :

Performance index

References

  1. Yamamoto, Y.; Yun, X.: Coordinating locomotion and manipulation of a mobile manipulator. In: General Robotics and Active Sensory Perception (GRASP) Laboratory, pp. 1–13. (1992)

  2. Yamamoto, Y.; Yun, X.: Unified analysis on mobility and manipulability of mobile manipulators. In: Proceedings of the International Conference on Robotics and Automation, pp. 1200–1206 (1999)

  3. Hirata, Y.; Kume, Y.; Sawada, T.; Wang, Z.; Kosuge, K.: Handling of an object by multiple mobile manipulators in coordination based on caster-like dynamics. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, pp. 807–812. (2004)

  4. Tanner, H.G.; Loizou, S.G.; Kyrakopoulos, K.J.: Nonholonomic navigation and control of cooperating mobile manipulators. IEEE Trans. Robot. Autom. 19(1), 53–64 (2003)

    Article  Google Scholar 

  5. Yamamoto, Y.; Fukuda, S.: Trajectory planning of multiple mobile manipulators with collision avoidance capability. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3565–3570. (2002)

  6. Sugar, T.G.; Kumar, V.: Control of cooperating mobile manipulators. IEEE Trans. Robot. Autom. 18(1), 94–103 (2002)

    Article  Google Scholar 

  7. Mohajerpoor, R.; Rezaei, M.; Talebi, A.; Noorhosseini, M.; Monfaredi, R.: A robust adaptive hybrid force/position control scheme of two planar manipulators handling an unknown object interacting with an environment. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 226(4), 509–522 (2012)

    Article  Google Scholar 

  8. Gueaieba, W.; Al-Sharhanb, S.; Bolica, M.: Robust computationally efficient control of cooperative closed-chain manipulators with uncertain dynamics. Automatica 43, 842–851 (2007)

    Article  MathSciNet  Google Scholar 

  9. Namvar, M.; Aghili, F.: Adaptive force-motion control of coordinated robots interacting with geometrically unknown environments. IEEE Trans. Robot. 21(4), 678–694 (2005)

    Article  Google Scholar 

  10. Tavasoli, A.; Eghtesad, M.; Jafarian, H.: Two-time scale control and observer design for trajectory tracking of two cooperating robot manipulators moving a flexible beam. Robot. Auton. Syst. 57, 212–221 (2009)

    Article  Google Scholar 

  11. Li, Z.; Sam, G.S.; Wang, Z.: Robust adaptive control of coordinated multiple mobile manipulators. Mechatronics 18, 239–250 (2008)

    Article  Google Scholar 

  12. Fang, M.; Chen, W.; Li, Z.: Adaptive tracking control of coordinated nonholonomic mobile manipulators. In: Proceedings of the 17th World Congress the International Federation Automatic Control Seou, pp. 4343–4348. (2008)

  13. Qian, S.; Zi, B.; Ding, H.: Dynamics and trajectory tracking control of cooperative multiple mobile cranes. Nonlinear Dyn 83, 89–108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yi, R.; Chen, Z.; Liu, Y.; Gu, Y.; Jin, M.; Liu, H.: Adaptive hybrid position/force control of dual-arm cooperative manipulators with uncertain dynamics and closed-chain kinematics. J. Frankl. Inst. 354, 7767–7793 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, D.; Zhai, J.; Ai, W.; Fei, S.: Inertial space tracking for free-floating space robot manipulator using RBFNN based compensating control algorithm. Neurocomputing 89, 198–208 (2016)

    Google Scholar 

  16. Li, Z.; Sam, G.S.; Adams, M.; Wijesoma, W.S.: Robust adaptive control of cooperating mobile manipulators with relative motion. In: 22nd IEEE International Symposium on Intelligent Control Part of IEEE Multi-conference on Systems and Control Singapore, pp. 351–356. (2007)

  17. Jafari, A.; Ryun, J.H.: Independent force and position control for cooperating manipulators handling an unknown object and interacting with an unknown environment. J. Frankl. Inst. 353, 857–875 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gierlak, P.; Szuster, M.: Adaptive position/force control for robot manipulator in contact with a flexible environment. Robot. Auton. Syst. 95, 80–101 (2017)

    Article  Google Scholar 

  19. Ge, S.S.; Huang, L.; Lee, T.H.: Model-based and neural-network-based adaptive control of two robotic arms manipulating an object with relative motion. Int. J. Syst. Sci. 32(1), 9–23 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Z.; Chen, W.: Adaptive neural-fuzzy control of uncertain constrained multiple coordinated nonholonomic mobile manipulators. Eng. Appl. Artif. Intell. 21, 985–1000 (2008)

    Article  Google Scholar 

  21. Zhao, D.; Ni, W.; Zhu, Q.: A framework of neural networks based on consensus control for multiple robotic manipulators. Neurocomputing 140, 8–18 (2014)

    Article  Google Scholar 

  22. Kumar, N.; Panwar, V.; Sukavanam, N.: Neural network control of coordinated multiple manipulator systems. In: Proceedings of the International Conference on Computing: Theory and Applications (ICCTA’07) (2007)

  23. Panwar, V.; Kumar, N.; Sukavanam, N.; Borm, J.H.: Adaptive neural controller for cooperative multiple robot manipulator system manipulating a single rigid object. Appl. Soft Comput. 12, 216–227 (2012)

    Article  Google Scholar 

  24. Singh, H.P.; Sukavanam, N.: Intelligent robust adaptive trajectory and force tracking controller for holonomic constrained nonholonomic mobile manipulators. Adv. Sci. Lett. 16, 313–321 (2012)

    Article  Google Scholar 

  25. Baigzadehnoe, B.; Rahmani, Z.; Khosravi, A.; Rezaie, B.: On position/force tracking control problem of cooperative robot manipulators using adaptive fuzzy backstepping approach. ISA Trans. 70, 432–446 (2017)

    Article  Google Scholar 

  26. Li, Z.; Yang, C.; Tang, Y.: Decentralized adaptive fuzzy control of coordinated multiple mobile manipulators interacting with non-rigid environments. IET Control Theory Appl. 7(3), 397–410 (2012)

    Article  Google Scholar 

  27. Li, Z.; Deng, S.; Su, C.Y.; Li, G.; Yu, Z.; Liu, Y.; Wang, M.: Decentralised adaptive control of cooperating Robotic manipulators with disturbance observers. IET Control Theory Appl. 8(7), 515–521 (2013)

    Article  MathSciNet  Google Scholar 

  28. Rao, D.C.; Kabat, M.R.; Das, P.K.; Jena, P.K.: Cooperative navigation planning of multiple mobile robots using improved Krill Herd. Arab. J. Sci. Eng. (2018). https://doi.org/10.1007/s13369-018-3216-0

    Google Scholar 

  29. Li, Z.; Yang, C.; Su, C.Y.; Deng, S.; Sun, F.; Zhang, W.: Decentralized fuzzy control of multiple cooperating robotic manipulators with impedance interaction. IEEE Trans. Fuzzy Syst. 23(4), 1044–1055 (2015)

    Article  Google Scholar 

  30. Rani, M.; Kumar, N.; Singh, H.P.: Efficient position/force control of constrained mobile manipulators. Int. J. Dyn. Control (2018). https://doi.org/10.1007/s40435-018-0401-7

    MathSciNet  Google Scholar 

  31. Park, J.; Sandberg, J.W.: Universal approximation using radial basis function networks. Neural Comput. 3, 246–257 (1991)

    Article  Google Scholar 

  32. Slotine, J.J.E.; Li, W.: Applied Nonlinear Control. Prentice-Hall, New Jersey (1991)

    MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to University Grants Commission (UGC) Sr. No. 2121240927 with Ref No. 23/12/2012 (ii) EU-V, New Delhi, India for their financially support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, M., Kumar, N. A New Hybrid Position/Force Control Scheme for Coordinated Multiple Mobile Manipulators. Arab J Sci Eng 44, 2399–2411 (2019). https://doi.org/10.1007/s13369-018-3544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3544-0

Keywords

Navigation