Arabian Journal for Science and Engineering

, Volume 44, Issue 4, pp 3389–3403 | Cite as

DNA-Based AES with Silent Mutations

  • Hatem M. BahigEmail author
  • Dieaa I. Nassr
Research Article - Computer Engineering and Computer Science


We present a new version of Advanced Encryption Standard (AES), called DNAES, based on deoxyribonucleic acid (DNA) sequences with silent mutations. We present how to encode and decode data in a DNA sequence and how to perform the different steps of AES. The proposed cipher has the following features: (1) it can be applied to any type of data (e.g., text, videos, images); (2) it has the same security level as AES; (3) it can be implemented in a biological environment or on DNA computers; (4) because the ciphertext generated by DNAES does not actually change the amino acid sequence of the protein, side effects are avoided; and (5) besides encryption, the proposed cipher can be used to hide data in a DNA sequence.


Advanced Encryption Standard (AES) DNA sequence Silent mutation Block ciphers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to the referees for their valuable comments and remarks.


  1. 1.
    Calladine, C.; Drew, H.; Luisi, B.; Travers, A.: Understanding DNA : the molecule and how it works, 3rd edn. Academic Press, Cambridge (2004)Google Scholar
  2. 2.
    Watson, J.: Molecular Biology of the Gene Molecular Biology of the Gene, No. 1 in Molecular Biology of the Gene. Benjamin, New York (1987)Google Scholar
  3. 3.
    Kari, L.; Seki, S.; Sosík, P.: DNA computing–foundations and implications. In: Rozenberg, G., Bäck, T., Kok, J. (eds.) Handbook of Natural Computing, pp. 1073–1127. Springer, Berlin (2012)CrossRefGoogle Scholar
  4. 4.
    Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266(11), 1021–1024 (1994)CrossRefGoogle Scholar
  5. 5.
    Lipton, R.: Using DNA to solve NP-complete problems. Science 268, 542–545 (1995)CrossRefGoogle Scholar
  6. 6.
    Boneh, D.; Dunworth, C.; Lipton, R.; Sgall, J.: On the computational power of DNA. Discrete Appl. Math. 71(1–3), 79–94 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boneh, D.; Dunworth, C.; Lipton, R.: Breaking DES using a molecular computer. In: DNA Based Computers, Proceedings of a DIMACS Workshop, Princeton, New Jersey, USA, April 4, 1995, pp. 37–66 (1995)Google Scholar
  8. 8.
    Abbasy, M.; Manaf, A.; Shahidan, M.: Data Hiding method based on DNA basic characteristics. In: Ariwa, E., El-Qawasmeh, E. (eds.) Proceedings of the Digital Enterprise and Information Systems: International Conference, DEIS 2011, London, UK, July 20–22, 2011, pp. 53–62. Springer (2011)Google Scholar
  9. 9.
    Abbasy, M.; Nikfard, P.; Ordi, A.; Torkaman, M.: DNA base data hiding algorithm. Int. J. New Comput. Archit. Appl. 2(1), 183–193 (2012)Google Scholar
  10. 10.
    Gehani, A.; LaBean, T.; Reif, J.: DNA-based cryptography, in aspects of molecular computing. In: Jonoska, N., ăun, G.P., Rozenberg, G. (eds.) Essays Dedicated to Tom Head, on the Occasion of His 70th Birthday, pp. 167–188. Springer, Berlin (2004)Google Scholar
  11. 11.
    Hamed, G.; Marey, M.; El-Sayed, S.; Tolba, F.: DNA based steganography: survey and analysis for parameters optimization. In: Hassanien, A., Grosan, C., Tolba, F. (eds.) Applications of Intelligent Optimization in Biology and Medicine: Current Trends and Open Problems, pp. 47–89. Springer, Cham (2016)CrossRefGoogle Scholar
  12. 12.
    Tang, Q.; Ma, G.; Zhang, W.; Yu, N.: Reversible data hiding for DNA sequences and its applications. Int. J. Digit. Crime For. 6(4), 1–13 (2014)CrossRefGoogle Scholar
  13. 13.
    Atito, A.; Khalifa, A.; Rida, S.: DNA-based data encryption and hiding using playfair and insertion techniques. J. Commun. Comput. Eng. 2, 44–49 (2012)CrossRefGoogle Scholar
  14. 14.
    Guo, C.; Chang, C.; Wang, Z.: A new data hiding scheme based on DNA sequence. Int. J. Innov. Comput. Inf. Control 8, 1–11 (2012)Google Scholar
  15. 15.
    Khalifa, A.: LSBase: a key encapsulation scheme to improve hybrid crypto-systems using DNA steganography. In: 8th International Conference on Computer Engineering and Systems. IEEE (2013)Google Scholar
  16. 16.
    Khalifa, A.; Atito, A.: High-capacity DNA-based steganography. In: 8th International Conference on Informatics and Systems. IEEE (2012)Google Scholar
  17. 17.
    Skariya, M.; Varghese, M.: Enhanced double layer security using RSA over DNA based data encryption system. Int. J. Comput. Sci. Eng. Technol. 4, 746–750 (2013)Google Scholar
  18. 18.
    Taur, J.; Lin, H.; Lee, H.; Tao, C.: Data hiding in DNA sequences based on table lookup substitution. Int. J. Innov. Comput. Inf. Control 8, 6585–6598 (2012)Google Scholar
  19. 19.
    UbaidurRahmana, N.H.; Balamuruganb, C.; Mariappanab, R.: A novel dna computing based encryption and decryption algorithm. Proc. Comput. Sci. 46, 463–475 (2015)CrossRefGoogle Scholar
  20. 20.
    UbaidurRahmana, N.H.; Balamuruganb, C.; Mariappanab, R.: A novel string matrix data structure for DNA encoding algorithm. Proc. Comput. Sci. 46, 820–832 (2015)CrossRefGoogle Scholar
  21. 21.
    Cui, G.; Qin, L.; Wang, Y.; Zhang, X.: An encryption scheme using DNA technology. In: Third International Conference on Bio-Inspired Computing: Theories and Applications, pp. 37–42 (2008)Google Scholar
  22. 22.
    Sabry, M.; Hashem, M.; Nazmy, T.; Khalifa, M.: Design of DNA-based advanced encryption standard (AES). In: 2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 390–397 (2015)Google Scholar
  23. 23.
    Xin-she, L.; Lei, Z.; Yu-pu, H.: A novel generation key scheme based on DNA. In: International Conference on Computational Intelligence and Security, pp. 264–266 (2008)Google Scholar
  24. 24.
    Amin, S.; Saeb, M.; El-Gindi, S.: A DNA-based implementation of YAEA Encryption Algorithm. In: IASTED International Conference on Computational Intelligence, pp. 120–125 (2006)Google Scholar
  25. 25.
    Sabry, M.; Hashem, M.; Nazmy, T.: Three reversible data encoding algorithms based on DNA and amino acids structure. Int. J. Comput. Appl. 54(8), 24–30 (2012)Google Scholar
  26. 26.
    Sadeg, S.; Gougache, M.; Mansouri, N.; Drias, H.: An encryption algorithm inspired from DNA. In: IEEE Proceedings of International Conference on Machine and Web Intelligence (ICMWI), pp. 344–349 (2010)Google Scholar
  27. 27.
    Wang, X.; Zhang, Q.: DNA computing-based cryptography. In: 2009 Fourth International on Conference on Bio-Inspired Computing, pp. 1–3 (2009)Google Scholar
  28. 28.
    Padma, B.T.: DNA computing theory with ECC. (2010)
  29. 29.
    Agrawal, A.; Bhopale, A.; Sharma, J.; Ali, M.; Gautam, D.: Implementation of DNA algorithm for secure voice communication. Int. J. Sci. Eng. Res. 3, 362 (2012)Google Scholar
  30. 30.
    Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J.: Molecular Biology of the Cell, 4th edn. Garland, Oxfordshire (2002)Google Scholar
  31. 31.
    Clelland, C.; Risca, V.; Bancroft, C.: Hiding messages in DNA microdots. Nature 399(6736), 533–534 (1999)CrossRefGoogle Scholar
  32. 32.
    Cui, G.; Wang, Y.; Han, D.; Wang, Y.; Wang, Z.; Wu, Y.: An encryption scheme based on DNA microdots technology. In: Pan, L., Păun, G., Pérez-Jiménez, M., Song, T. (eds.) Proceedings of the Bio-Inspired Computing-Theories and Applications: 9th International Conference, BIC-TA 2014, Wuhan, China, pp. 78–82. Springer, Heidelberg (2014)Google Scholar
  33. 33.
    Jiao, S.; Goutte, R.: Hiding data in DNA of living organisms. Nat. Sci. 1(3), 181–184 (2009)Google Scholar
  34. 34.
    Santoso, K.; Kwon, K.; Lee, S.; Kwon, S.: High capacity data hiding method in DNA with mutation handling. In: Proceedings of the 1st International Workshop on Information Hiding and Its Criteria for Evaluation, IWIHC ’14, ACM, New York, NY, USA, pp. 56–63 (2014)Google Scholar
  35. 35.
    Claybourne, A.: Introduction to Genes and DNA. Usborne Publishing Ltd., London (2014)Google Scholar
  36. 36.
    Calladine, C.; Drew, H.; Luisi, B.; Travers, A.: Understanding DNA: The Molecule and How it Works, 3rd edn. Academic Press, Cambridge (2004)Google Scholar
  37. 37.
    Daemen, J.; Rijmen, V.: The Design of Rijndael. Springer, Secaucus (2002)CrossRefzbMATHGoogle Scholar
  38. 38.
    Stallings, W.: Cryptography and Network Security, 4th edn. Prentice-Hall Inc., Upper Saddle River (2005)Google Scholar
  39. 39.
    Silverman, J.: Fast multiplication in finite fields GF(\(2^n\)). In: KoçÇ, C., Paar, C. Proceedings of the Cryptographic Hardware and Embedded Systems: First International Workshop, CHES’99 Worcester, MA, USA, August 12–13, 1999, pp. 122–134. Springer (1999)Google Scholar
  40. 40.
    Ahmed, E.; Shaaban, E.; Hashem, M.: Lightweight mix columns implementation for AES. In: Proceedings of the 11th WSEAS International Conference on Mathematical Methods and Computational Techniques in Electrical Engineering MMACTEE’09, pp. 48–53 (2009)Google Scholar
  41. 41.
    Kaur, M.; Kumar, V.: Colour image encryption technique using differential evolution in non-subsampled contourlet transform domain. IET Image Process. 12(7), 1273–1283 (2018)CrossRefGoogle Scholar
  42. 42.
    Kaur, M.; Kumar, V.: An efficient image encryption method based on improved lorenz chaotic system. Electron. Lett. 54(9), 562–564 (2018)CrossRefGoogle Scholar
  43. 43.
    Kaur, M; Kumar, V (2018) Adaptive differential evolution-based lorenz chaotic system for image encryption. Arab. J. Sci. Eng.

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Computer Science Division, Department of Mathematics, Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations