Skip to main content

Numerical Study of Long-Term Radioactivity Impact on Foodstuff for Accidental Release Using Atmospheric Dispersion Model

Abstract

The radiological consequences of a potential atmospheric release of \(^{131}\)I, \(^{137}\)Cs, \(^{133}\)Xe and \(^{90}\)Sr for hypothetical accident appropriate to a 10 MW research reactor were calculated. The Gaussian model CROM (Screening Model for Environmental Assessment) was used to compute the accidental radioactive release under emergency exposure situation and the estimation of yearly average dose by different exposure pathways. The realistic assessment of radiation level due to the abnormal occurrence operation of nuclear installations such as foods consumption, external irradiation, inhalation and ingestion has been examined. In this study, the evaluation of the dose results, to a continuous emissions rate under dry and wet deposition process, was estimated onto six reference groups of public covering the period from the new born infant to more than 17 years old as defined by the International Commission on Radiological Protection. The obtained modeling results were compared to the limits values prescribed by IAEA and Euratom recommendations. The findings indicate that the ground concentrations were found to be significant and mostly sensitive to the emission conditions, when the total deposition exceeds the contamination limits. The short-lived isotopes have much more influence on the concentration on foodstuff. The activity concentration of \(^{131}\)I is significantly higher in animal products and vegetables, while the \(^{137}\)Cs is dominant in fruits vegetables. In contrast, the Noble gas \(^{133}\)Xe is significantly lower.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ararkrog, A.: Global radiological impact of nuclear activities in the former Soviet Union. In: Proceedings of International Symposium on Environmental Impact of Radioactive Releases, Vienna, 8–12 May (1995)

  2. 2.

    IAEA, International Atomic Energy Agency.: Environmental and source monitoring for purposes of radiation protection. In: IAEA Safety Standards Series No. RS–G-1.8, Vienna (1982)

  3. 3.

    Till, J.E.; Rood, A.S.; Voillequé, P.G.; McGavran, P.D.; Meyer, K.R.; Grogan, H.G.; Sinclair, W.K.; Aanenson, J.W.; Meyer, H.R.; Rope, S.K.; Case, M.J.: Risk to the public from historical releases of radionuclides and chemicals at the rocky flats nuclear weapons plant. J. Expo. Anal. Epidemiol. 12(5), 355–372 (2002)

    Article  Google Scholar 

  4. 4.

    Till, J.E.; Grogan, H.A.: Radiological Risk Assessment and Environmental Analysis. Oxford University press (2008). ISBN: 978–0 19–512727–0

  5. 5.

    National Research Council: Understanding Risk: Informing Decisions in a Democratic Society. National Academy Press, Washington (1996)

    Google Scholar 

  6. 6.

    Mohler, H.J.; Meyer, K.R.; Grogan, H.A.; Aanenson, J.W.; Till, J.E.: Application of NCRP air screening factors for evaluating both routine and episodic radionuclide releases to the atmosphere. Health Phys. J. 86(2), 135–144 (2004)

    Article  Google Scholar 

  7. 7.

    Brandt, J.; Christensen, J.H.; Frohn, L.M.: Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model. Atmos. Chem. Phys. 2(5), 397–417 (2002). https://doi.org/10.5194/acp-2-397-2002

    Article  Google Scholar 

  8. 8.

    Bell, J.N.B.; Shaw, G.: Ecological lessons from the Chernobyl accident. Environ. Int. J. 31(6), 771–777 (2005). https://doi.org/10.1016/j.envint.2005.05.026

    Article  Google Scholar 

  9. 9.

    Alexakhin, R.M.; Sanzharova, N.I.; Fesenko, S.V.; Spiridonov, S.I.; Panov, A.V.: Chernobyl radionuclide distribution, migration, and environmental and agricultural impacts. Health Phys. 93(5), 418–426 (2007). https://doi.org/10.1097/01.HP.0000285093.63814.b7

    Article  Google Scholar 

  10. 10.

    John, E.T.; Grogan, H.A.: Radiological Risk Assessment and Environmental Analysis, pp. pp 360–380. Oxford University Press, Oxford (2008)

    Google Scholar 

  11. 11.

    Hikaru, A.; Amano, M.; Bi, C.; Takao, K.; Takeshi, K.; et al.: Radiation measurements in the Chiba metropolitan area and radiological aspects of fallout from the Fukushima Daiichi nuclear power plants accident. J. Environ. Radioact. 111, 42–52 (2012). https://doi.org/10.1016/j.jenvrad.2011.10.019

    Article  Google Scholar 

  12. 12.

    Morino, Y.; Ohara, T.; Nishizawa, M.: Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophys. Res. Lett 38(7), 1–7 (2011)

    Article  Google Scholar 

  13. 13.

    Stohl, A.; Seibert, P.; Wotawa, G.; Arnold, D.; Burkhart, J.F.; Eckhardt, S.; Yasunari, T.J.: Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Daiichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. J. Atmos. Chem. Phys. 12(5), 2313–2343 (2012). https://doi.org/10.5194/acp-12-2313-2012

    Article  Google Scholar 

  14. 14.

    Christoudias, T.; Lelieveld, J.: Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident. Atmos. Chem. Phys. J 13(3), 1425–1438 (2013). https://doi.org/10.5194/acp-13-1425-2013

    Article  Google Scholar 

  15. 15.

    IAEA, International Atomic Energy Agency International.: Nuclear and Radiological Event Scale User Manual, Vienna (2009)

  16. 16.

    Juan, C.M.; Beatriz, R.; Tesus, R.: CROM Code user’s manual V8.2.5, Código de cRibapara evaluaciÓn de iMpacto, Screening Model for Environmental Assessment, CIEMAT, Madrid (2014)

  17. 17.

    Shoaib, R.S.; Iqbal, M.: Atmospheric dispersion modeling for an accidental release from the Pakistan Research Reactor-1 (PARR-1). Ann. Nucl. Energy 3232, 1157–1166 (2005). https://doi.org/10.1016/j.anucene.2005.03.2008

    Google Scholar 

  18. 18.

    IAEA, International Atomic Energy Agency.: Fundamental calculation model for the determination of the radiological effects inside and outside the research reactor after hypothetical accidents with release of high amount of fission products from the core. In: Research Reactor Core Conversion Guidebook, IAEA-TECDOC-643, Vienna 2, pp. 211–232 (1992)

  19. 19.

    IAEA, International Atomic Energy Agency.: Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides from Routine Releases, Safety Series No. 57, Vienna (1982)

  20. 20.

    Irwin, J.S.: A theoretical variation of the wind profile power-low exponent as a function of surface roughness and stability. Atmos. Environ. 13, 191–194 (1979)

    Article  Google Scholar 

  21. 21.

    Nuclear Regulatory Commission (NRC).: Reactor Safety Study: An Assessment of Accident Risk in US Commercial Nuclear Power Plants, WASH-1400, NUREG-75/014 (1975)

  22. 22.

    NRC, Nuclear Regulatory Commission.: Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors, Regulatory Guide 1.183 (2000)

  23. 23.

    Meng, Dan; Yang, L.; Shen, F.; Yang, Y.; Ma, Y.; Ma, T.; Zhang, Z.; Fu, C.: Environment assessing for airborne radioactive particulate release-introduction of methods in IAEA safety report series no. 19. J. Radiat. Prot. Res. 41(4), 409–417 (2016). https://doi.org/10.14407/jrpr.2016.41.4.409

    Article  Google Scholar 

  24. 24.

    IAEA, International Atomic Energy Agency.: Fundamental calculation model for the determination of the radiological effects inside and outside the research reactor after hypothetical accidents with release of high amount of fission products from the core. In: Research Reactor Core Conversion Guidebook, IAEA-TECDOC-643, Vienna 2, pp. 211–232 (1992)

  25. 25.

    NCRP, National Council on Radiation Protection and Measurements.: Screening Techniques for Determining Compliance with Environmental Standards, Releases of Radionuclides to the Atmosphere, NCRP Commentary No 3, Revision Plus Addendum, Bethesda (1996)

  26. 26.

    IAEA, International Atomic Energy Agency.: Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment, Safety Reports Series No. 19, Vienna (2001)

  27. 27.

    ICRP60.: Recommendation of International Commission on Radiological Protection (1990)

  28. 28.

    Yasunari, T.J.; Stohl, A.; Ryugo, S.H.; John, F.B.; Sabine, E.; Tetsuzo, Y.: Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc. Natl. Acad. Sci. 108(49), 19530–19534 (2011). https://doi.org/10.1073/pnas.1112058108

    Article  Google Scholar 

  29. 29.

    IAEA, International Atomic Energy Agency.: International Nuclear and Radiological Event Scale User Manual, Vienna (2009)

  30. 30.

    IAEA, International Atomic Energy Agency.: Regulations for the Safe Transport of Radioactive Material, IAEA Safety Requirements, No. TS-R-1, Vienna (2005/2009)

  31. 31.

    Malek, M.A.; Chisty, K.J.A.; Rahman, M.M.: Radiological concentration distribution of \(^{131}\)I, \(^{132}\)I, \(^{133}\)I, \(^{134}\)I, and \(^{135}\)I due to a hypothetical accident of TRIGA Mark-II research reactor. J. Mod. Phys. 3, 1572–1585 (2012). https://doi.org/10.4236/jmp.2012.310194

    Article  Google Scholar 

  32. 32.

    Bourcier, L.; Masson, O.; Laj, P.; Paulat, P.; Pichon, J.M.: \(^{7}\)Be, \(^{210}\)Pb and \(^{137}\)Cs concentrations in cloud water. Env. Rad. J. 128, 15–19 (2014). https://doi.org/10.1016/j.jenvrad.2013.10.020

    Article  Google Scholar 

  33. 33.

    Steinhauser, G.; Victoria, S.; Katsumi, S.: Concentration of strontuim-90 at selected HotSpot in Japan. PLOS One J. (2013). https://doi.org/10.1371/journal.pone.0057760

    Google Scholar 

  34. 34.

    Smith, J.G.; Simmonds, J.R.: The Methodology for Assessing the Radiological Consequences of Routine Release of Radionuclides to the Environment Used PC-CREAM 08. Health Protection Agency. Radiation Protection Division. Report HPA-RPD-058 (2009)

  35. 35.

    TEPCO, Tokyo Electric Power Company.: Radiation dose Measured in the Fukushima Daiichi Nuclear Power Station. http://www.tepco.co.jp/en/nu/fukushima-np/f2/index-e.html. Accessed 18 November 2011 (2011).

Download references

Acknowledgements

This work was supported by funding from Nuclear Research Center of Birine/Algerian Atomic Energy Commission. The authors are grateful and wish to thank the Laboratory of Aeronautics Science of Blida University that framing and help us to prepare this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ahmed Dahia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dahia, A., Merrouche, D., Merouani, D.R. et al. Numerical Study of Long-Term Radioactivity Impact on Foodstuff for Accidental Release Using Atmospheric Dispersion Model. Arab J Sci Eng 44, 5233–5244 (2019). https://doi.org/10.1007/s13369-018-3518-2

Download citation

Keywords

  • Accidental release
  • Radionuclides
  • Radioactive contaminant
  • Deposition
  • Gaussian model
  • Foodstuff chains