Skip to main content
Log in

Nickel-Substituted Polyoxometalate Nanomaterial as a Green and Recyclable Catalyst for Dye Decolorization

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The catalytic activity of a synthesized nanopolyoxometalate \((\upalpha _{2}\hbox {P}_{2}\hbox {W}_{17}\hbox {NiO}_{61})^{8-}\) was investigated in the decolorization of methyl orange (MO) using KMnO\(_{4}\) as an oxidant in aqueous medium. This catalyst was synthesized by the incorporation of nickel into the polytungstic matrix of a lacunar compound \((\upalpha _{2}\hbox {P}_{2}\hbox {W}_{17})^{10-}\) which was prepared from a saturated parent molecule (\(\upalpha \hbox {P}_{2}\hbox {W}_{18})^{6-}\). For characterization, the applied methods, IR, UV–vis, and XRD, have been studied. The optimal experimental conditions were achieved at: pH 6, \(25\,{^{\circ }}\hbox {C}\), 10 mg/L of MO concentration, 0.1 mM of oxidant concentration, and 0.3 g of catalyst mass. Under these conditions, the discoloration efficiency obtained was 90.75%. The presence of chloride and sulfate ions showed the inhibitory effect on the discoloration efficiency. At the end of the discoloration reaction, the catalyst was recovered, washed, and reused in several cycles keeping its catalytic activity intact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Svanberg, H.; Struve, H.: J. Prakt. Chem. 44, 257–291 (1848)

    Article  Google Scholar 

  2. Dawson, B.: The structure of the 9(18)-heteropolyanion in potassium 9 (18) tungsto phosphate, \(\text{ K }_{6}(\text{ P }_{2}\text{ W }_{18}\text{ O }_{62})\text{14H }_{2}\text{ O }\). Acta. Crystallo. 6, 113–126 (1953)

    Article  Google Scholar 

  3. Pope, M.T.: Heteropoly and Isopoly Oxometalates. Springer, Berlin (1983)

    Book  Google Scholar 

  4. Contant, R.; Hervé, G.: The heteropolyoxotungstates: relationships between routes of formation and structures. Rev. Inorg. Chem. 22, 63–111 (2002)

    Article  Google Scholar 

  5. Ciabrini, J.P.; Contant, R.: Mixed heteropolyanions. Synthesis and formation constants of Cerium (III) and Cerium (IV) complexes with lacunary tungstophosphates. J. Chem. Res. 391, 2720–2744 (1993)

    Google Scholar 

  6. Rhule, J.T.; Hill, C.L.; Judd, D.A.: Polyoxometalates in medicine. Chem. Rev. 98, 327–357 (1988)

    Article  Google Scholar 

  7. Omwoma, S.; Chen, W.; Tsunashima, R.; Song, Y.-F.: Recent advances on polyoxometalates intercalated layered double hydroxides: from synthetic approaches to functional material applications. Coord. Chem. Rev. 258–259, 58–71 (2014)

    Article  Google Scholar 

  8. Bielanski, A.; Lubanska, A.; Micek-Ilnicka, A.; Pozniczek, J.: Polyoxometalates as the catalysts for tertiary ethers MTBE and ETBE synthesis. Coord. Chem. Rev. 249, 2222–2231 (2005)

    Article  Google Scholar 

  9. Ding, B.; Gong, J.; Kim, J.; Shiratori, S.: Polyoxometalate nanotubes from layer-by-layer coating and thermal removal of electrospun nanofibers. Nanotechnology 16, 785–790 (2005)

    Article  Google Scholar 

  10. Biboum, R.N.; Keita, B.; Franger, S.; Nanseu Njiki, C.P.; Zhang, G.; Zhang, J.; Liu, T.; Mbomekalle, I.-M.; Nadjo, L.: Pd0@Polyoxometalate nanostructures as green electrocatalysts: illustrative example of hydrogen production. Materials 3, 741–754 (2010)

    Article  Google Scholar 

  11. Wang, W.; Yang, S.: Photocatalytic degradation of organic dye methyl orange with phosphotungstic acid. J. Water Resour. Prot. 2, 979–983 (2010)

    Article  Google Scholar 

  12. Bakheet, B.; Yuan, S.; Li, Z.; Wang, H.; Zuo, J.; Komarneni, S.; Wang, Y.: Electro-peroxone treatment of Orange II dye waste water. Water Res. 47, 6234–6243 (2013)

    Article  Google Scholar 

  13. Brillas, E.; Martínez-Huitle, C.A.: Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B. Environ 166, 603–643 (2015)

    Article  Google Scholar 

  14. Bahramia, M.; Nezamzadeh-Ejhieh, A.: Effect of the supported ZnO on clinoptilolite nano-particles in the photodecolorization of semi-real sample bromothymol blue aqueous solution. Mater. Sci. Semicond. Proc. 30, 275–284 (2015)

    Article  Google Scholar 

  15. Buthiyappan, A.; Abdul Aziz, A-R.; Wan Daud W. M. A.; Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Rev. Chem. Eng. 32 (2015)

  16. Nezamzadeh-Ejhieh, A.; Hushmandrad, S.: Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst. Appl. Catal. A. Gen. 388, 149–159 (2010)

    Article  Google Scholar 

  17. Nezamzadeh-Ejhieh, A.; Banan, Z.: A comparison between the efficiency of CdS nanoparticles/zeolite A and CdO/zeolite A as catalysts in photodecolorization of crystal violet. Desalination 279, 146–151 (2011)

    Article  Google Scholar 

  18. Salima, A.; Benaouda, B.; Noureddine, B.; Duclaux, L.: Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents. Water Res. 47, 3375–3388 (2013)

    Article  Google Scholar 

  19. Alventosa-deLara, E.; Barredo-Damas, S.; Zuriaga-Agustí, E.; AlcainaMiranda, M.I.; Iborra-Clar, M.I.: Ultrafiltration ceramic membrane performance during the treatment of model solutions containing dye and salt. Sep. Purif. Technol. 129, 96–105 (2014)

    Article  Google Scholar 

  20. Szpyrkowicz, L.; Juzzolino, C.; Kaul, S.N.: A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent. Water Res. 35, 2129–2136 (2001)

    Article  Google Scholar 

  21. Senobari, S.; Nezamzadeh-Ejhieh, A.: A comprehensive study on the photocatalytic activity of coupled copper oxide-cadmium sulfide nanoparticles. Spectrochim. Acta A Mol. 196, 334–343 (2018)

    Article  Google Scholar 

  22. Jiang, J.; Pang, S.-Y.; Ma, J.: Oxidation of triclosan by permanganate (Mn (VII)): importance of ligands and in situ formed manganese oxides. Environ. Sci. Technol. 43, 8326–8331 (2009)

    Article  Google Scholar 

  23. Contant, R.; Abbessi, M.; Canny, J.; Belhouari, A.; Keita, B.; Nadjo, L.: Iron-Substituted dawson-type tungstodiphosphates: synthesis, characterization, and single or multiple initial electronation due to the substituent nature or position. Inorg. Chem. 36, 4961–4967 (1997)

    Article  Google Scholar 

  24. Contant, R.: Potassium octadecatungstodiphosphates (V) and related lacunary compounds. Inorg. Synth. 27, 104–111 (1990)

    Google Scholar 

  25. Contant, R.; Ciabrini, J.P.: Préparation et propriétés des solutions de quelques hétéropolyanions lacunaires dérivés des 18-tungsto-2- phosphates (isomères \(\alpha \) et \(\beta )\). J. Chem. Res. 2601–2609 (1977)

  26. Rocchiccioli-Deltcheff, C.; Thouvenot, R.: Vibrational studies of heteropolyanions related to \(\alpha \text{-P }_{2}\text{ W }_{18}\text{ O }_{62}^{6-}\). Spectrosc. Lett. 12, 127–138 (1979)

    Article  Google Scholar 

  27. Rocchiccioli–Deltcheff, C.; Thouvenot, R.; Franck, R.: Spectres i. r. et Raman d’hétéropolyaions \(\alpha --\text{ XM }_{12}\text{ O }_{40}^\text{ n } \) de structure de type Keggin \((\text{ X=B }^{\rm III}, \text{ Si }^{\rm IV}, \text{ Ge }^{\rm IV}, \text{ P }^{\rm V}, \text{ As }^{\rm Vet} \text{ M }= \text{ W }^{\rm VI }\text{ et } \text{ MO }^{\rm VI})\). Spectrochim. Acta A 32, 587–597 (1976)

    Article  Google Scholar 

  28. Graham, C.R.; Finke, R.G.: The classic Wells–Dawson polyoxometalate, \(\text{ K }_{6}[\text{ r-P }_{2}\text{ W }_{18}\text{ O6 }_{2}]\text{14H }_{2}\text{ O }\). Answering an 88 year-old question: what is its preferred, optimum synthesis? Inorg. Chem. 47, 3679–3686 (2008)

    Article  Google Scholar 

  29. Rusu, M.; Marcu, G.; Rusu, D.; Roṣu, C.; Tomṣa, A.-R.: Uranium (IV) polyoxotungstophosphates. J. Radioanal. Nucl. Ch. 242, 467–472 (1999)

    Article  Google Scholar 

  30. Xueyu, Q.; Xia, T.; Qingyin, W.; Zhiqi, He; Fahe, C.; Wenfu, Y.: Synthesis and electrochemical properties of substituted heteropoly acid with Dawson structure \(\text{ H }_{7}[\text{ In }(\text{ H }_{2}\text{ O })\text{ P }_{2}\text{ W }_{17}\text{ O }_{61}]\cdot \text{23H }_{2}\text{ O }\). Dalton Trans. 41, 9897–9900 (2012)

    Article  Google Scholar 

  31. Shojaei, A.F.; Rezvani, M.A.; Heravi, M.: A green, reusable and highly efficient solid acid catalyst for the oxidation of aldehydes to the corresponding carboxylic acids using \(\text{ H }_{2}\text{ O }_{2} \text{ and } \text{ KMnO }_{4}:\text{ H }_{5}\text{ PV }_{2}\text{ Mo }_{10}\text{ O }_{40 }\)(10-molybdo-2-vanadophosphoric heteropolyacid). J. Serb. Chem. Soc. 76, 1513–1522 (2011)

    Article  Google Scholar 

  32. Troupis, A.; Triantis, T.M.; Gkika, E.; Hiskia, A.; Papaconstantinou, E.: Photocatalytic reductive-oxidative degradation of Acid Orange 7 by polyoxometalates. Appl. Catal. B. Environ. 86, 98–107 (2009)

    Article  Google Scholar 

  33. Ajoudanian, N.; Nezamzadeh-Ejhieh, A.: Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. Mater. Sci. Semicond. Proc. 36, 162–169 (2015)

    Article  Google Scholar 

  34. Aleboyeh, A.; Olya, M.E.; Aleboyeh, H.: Oxidative treatment of azo dyes in aqueous solution by potassium permanganate. J. Hazard Mater. 162, 1530–1535 (2009)

    Article  Google Scholar 

  35. Olya, M.E.; Aleboyeh, H.; Aleboyeh, A.: Decomposition of a diazo dye in aqueous solutions by \(\text{ KMnO }_{4}/\text{ UV }/\text{ H }_{2}\text{ O }_{2}\) process. Prog. Color. Colo. Coat. 5, 41–46 (2012)

    Google Scholar 

  36. Bu, L.; Shi, Z.; Zhou, S.: Enhanced degradation of Orange G by permanganate with the employment of iron anode. Environ. Sci. Pollut. Res. 24, 388–394 (2017)

    Article  Google Scholar 

  37. Nezamzadeh-Ejhieh, A.; Karimi-Shamsabadi, M.: Comparison of photocatalytic efficiency of supported CuO onto micro and nano particles of zeolite X in photodecolorization of Methylene blue and Methyl orange aqueous mixture. Appl. Catal. A Gen. 477, 83–92 (2014)

    Article  Google Scholar 

  38. Baddenapalli, T.; Gandu, V.: Oxidative spectrophotometric determination of drugs using Kmno\(_{4}\) and methyl orange as dye. W. J. Pharmacy. Pharm. Sci. 4, 869–880 (2015)

    Google Scholar 

  39. Nisar, M.; Nosheen, S.; Noreen, A.; Majeed, I.; Saleem, A.; Sheikh, M.A.: Comparison of various oxidative treatments for removal of reactive black CNN. Afr J. Environ. Sci. Techno. 5, 916–923 (2011)

    Google Scholar 

  40. Xu, X.-R.; Li, H.-B.; Wang, W.-H.; Gu, J.-D.: Decolorization of dyes and textile wastewater by potassium permanganate. Chemosphere 59, 893–898 (2005)

    Article  Google Scholar 

  41. Han, Q.; Dong, W.; Wang, H.; Liu, T.; Sun, F.; Ying, Y.; Yan, X.: Effects of coexisting anions on decolorization of azo dye X-3B by ferrate (VI) and a comparative study between ferrate (VI) and potassium permanganate. Sep. Purif. Technol. 108, 74–82 (2013)

    Article  Google Scholar 

  42. Guoting, L.; Wang, N.; Liu, B.; Zhang, X.: Decolorization of azo dye Orange II by ferrate(VI)-hypochlorite liquid mixture, potassium ferrate(VI) and potassium permanganate. Desalination 249, 936–941 (2009)

    Article  Google Scholar 

  43. Reza, K.M.; Kurny, A.; Gulshan, F.: Photocatalytic degradation of methylene blue by magnetite+H\(_{2}\)O\(_{2}\) + UV process. Int. J. Env. Sci. Dev. 7, 325–329 (2016)

    Article  Google Scholar 

  44. Xu, G.R.; Zhang, Y.P.; Li, G.B.: Degradation of azo dye active brilliant red X-3B by composite ferrate solution. J. Hazard Mater. 161, 1299–1305 (2009)

    Article  Google Scholar 

  45. Tian, S.H.; Tu, Y.T.; Chen, D.S.; Chen, X.; Xiong, Y.: Degradation of acid Orange II at neutral pH using Fe\(^{2}\)(MoO\(_{4})^{3}\) as a heterogeneous Fenton-like catalyst. Chem. Eng J. 169, 31–37 (2011)

    Article  Google Scholar 

  46. Troupis, A.; Gkika, E.; Triantis, T.; Hiskia, A.; Papaconstantinou, E.: Photocatalytic reductive destruction of azo dyes by polyoxometallates: Naphthol blue black. J. Photochem. Photobiol. A: Chem. 188, 272–278 (2007)

    Article  Google Scholar 

  47. Esmaili-Hafshejani, J.; Nezamzadeh-Ejhieh, A.: Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution. J. Hazard. Mater 316, 194–203 (2016)

    Article  Google Scholar 

  48. Domínguez, J.R.; Beltrán, J.; Rodríguez, O.: Vis and UV photocatalytic detoxification methods (using TiO\(_{2}\), TiO\(_{2}\)/H\(_{2}\)O\(_{2}\), TiO\(_{2}\)/O\(_{3}\), TiO\(_{2}\)/S\(_{2}\)O\(_{28}\), O\(_{3}\), H\(_{2}\)O\(_{2}\), S\(_{2}\)O\(_{28}\), Fe\(^{3+}\)/H\(_{2}\)O\(_{2 }\)and Fe\(^{3+}\)/H\(_{2}\)O\(_{2 }\)/ C\(_{2}\)O\(_{24)}\) for dyes treatment. Catal. Today 101, 389–395 (2005)

    Article  Google Scholar 

  49. Shams-Ghahfarokhi, Z.; Nezamzadeh-Ejhieh, A.: As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process. Mater. Sci. Semicond. Proc. 39, 265–275 (2015)

    Article  Google Scholar 

  50. Tang, C.; Chen, V.: The photocatalytic degradation of reactive black 5 using TiO\(_{2}\)/UV in an annular photoreactor. Water Res. 38, 2775–2781 (2004)

    Article  Google Scholar 

  51. Perkins, W.S.; Walsh, W.K.; Reed, E.; Namboodri, C.G.: A demonstration of reuse of spent dyebath water following color removal with ozone textile. Chem. Color. 28, 31–37 (1995)

    Google Scholar 

  52. Muthukumar, M.; Sargunamani, D.; Selvakumar, N.; Nedumaran, D.: Effect of salt additives on decolouration of Acid Black 1 dye effluent by ozonation. Indian J. Chem. Technol. 11, 612–616 (2004)

    Google Scholar 

  53. Nezamzadeh-Ejhieh, A.; Ghanbari-Mobarakeh, Z.: Heterogeneous photodegradation of 2,4-dichlorophenol using FeO doped onto nano-particles of zeolite P. J. Ind. Eng. Chem. 21, 668–676 (2015)

    Article  Google Scholar 

  54. Derikvandi, H.; Nezamzadeh-Ejhieh, A.: Designing of experiments for evaluating the interactions of influencing factors on the photocatalytic activity of NiS and SnS2: Focus on coupling, supporting and nanoparticles. J. Colloid Interf. Sci. 490, 628–641 (2017)

    Article  Google Scholar 

  55. Senobari, S.; Nezamzadeh-Ejhieh, A.: A comprehensive study on the enhanced photocatalytic activity of CuO–NiO nanoparticles: designing the experiments. J. Mol. Liq. 261, 208–217 (2018)

    Article  Google Scholar 

  56. Shrinivas, G.; Uma, C.: An alternate green route to synthesis of mono and diesters using solid acid catalysts. Res. J. Chem. Sci. 5, 48–58 (2015)

    Google Scholar 

  57. Minna, Cb; Lin, J.; Lü, J.; You, Y.; Liu, T.; Cao, R.: Development of a polyoxometallate-based photocatalyst assembled with cucurbit [6] uril via hydrogen bonds for azo dyes degradation. J. Hazard. Mater 186, 948–951 (2011)

    Article  Google Scholar 

  58. Heravia, M.M.; Derikvand, F.; Bamoharram, F.F.: Highly efficient, four-component one-pot synthesis of tetrasubstituted imidazoles using Keggin-type heteropolyacids as green and reusable catalysts. J. Mol. Catal. A Chem. 263, 112–114 (2007)

    Article  Google Scholar 

  59. Mahmoodi, N.M.; Oveisi, M.; Asli, M.A.; Rezvani, M.A.; Valipour, A.: Bi-amino surface functionalized polyoxometalate nanocomposite as an environmentally friendly catalyst. Synthesis and dye degradation. Water Sci. Technol. 75, 2381–2389 (2017)

    Article  Google Scholar 

  60. Gharib, A.; Hashemipour Khorasani, B.R.; Jahangir, M.; Roshani, M.; Bakhtiari, L.; Mohadeszadeh, S.; Ahmadi, S.: Preyssler heteropolyacid supported on nano-SiO\(_{2}\), H14[NaP\(_{5}\)W\(_{30}\)O\(_{110}\)]/SiO\(_{2}\): a green and reusable catalyst in the synthesis of polysubstituted quinolones. Bulg. Chem. Commun. 46, 223–232 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nacéra Zabat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabat, N. Nickel-Substituted Polyoxometalate Nanomaterial as a Green and Recyclable Catalyst for Dye Decolorization. Arab J Sci Eng 44, 227–236 (2019). https://doi.org/10.1007/s13369-018-3503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3503-9

Keywords

Navigation